
cp ky
[Sorry. Ignored \beginiftex ... \endiftex]

cmu-user.info Top, Introduction, (dir), (dir)
[Sorry. Ignored \beginifinfo ... \endifinfo]

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/intro.ms
-*- Dictionary: cmu-user -*-

[Sorry. Ignored \beginmenu ... \endmenu]
Introduction, Design Choices and Extensions, Top, Top

Chapter 1

Introduction
CMU Common Lisp is a public-domain implementation of Common Lisp developed
in the Computer Science Department of Carnegie Mellon University. CMU Common
Lisp is currently supported on MIPS-processor DECstations, Sparc-based
workstations from Sun and the IBM RT PC, and other ports are planned. Currently, it
runs under CMUjs Mach operating system, OSF/1 or SunOS. This document describes
the implementation based on the Python compiler. Previous versions of CMU
Common Lisp ran on the IBM RT PC and (when known as Spice Lisp) on the Perq
workstation. See man cmucl (man/man1/cmucl.1) for other general information.

sources and executables are freely available via anonymous FTP; this software is
kas isl, and has no warranty of any kind. CMU and the authors assume no
responsibility for the consequences of any use of this software. See doc/release-notes.
txt for a description of the state of the release you have.

[Sorry. Ignored \beginmenu ... \endmenu]
Support, Local Distribution of CMU Common Lisp, Introduction, Introduction

1.1 Support
The CMU Common Lisp projectjs goal is to develop a high quality public domain
system, so we want your bug reports, bug fixes and enhancements. However, staff
limitations prevent us from providing extensive support to people outside of CMU.
We are looking for university and industrial affiliates to help us with porting and
maintenance for hardware and software that is not widely used at CMU.

This manual contains only implementation-specific information about . Users will
also need a separate manual describing the standard. was initially defined in
iCommon Lisp: The Language, by Guy L. Steele Jr. is now undergoing
standardization by the X3J13 committee of ANSI. The X3J13 spec is not yet
completed, but a number of clarifications and modification have been approved. We
intend that will eventually adhere to the X3J13 spec, and we have already
implemented many of the changes approved by X3J13.

Until the X3J13 standard is completed, the second edition of 2 is probably the best
available manual for the language and for our implementation of it. This book has no
official role in the standardization process, but it does include many of the changes
adopted since the first edition was completed.

In addition to the language itself, this document describes a number of useful
library modules that run in . , an Emacs-like text editor, is included as an integral part
of the environment. Two documents describe : the iHemlock Userjs Manual, and the
iHemlock Command Implementorjs Manual.

Local Distribution of CMU Common Lisp, Net Distribution of CMU Common
Lisp, Support, Introduction

1.2 Local Distribution of CMU Common Lisp
At CMU, you can get Common Lisp by running modmisc:

[Sorry. Ignored \beginexample ... \endexample]

This establishes /usr/misc/.cmucl as a symbolic link to the release area. In your .
login, add CMU CL to your path:

[Sorry. Ignored \beginexample ... \endexample]
Then run lisp. Note that the first time you run Lisp, it will take AFS several minutes to
copy the image into its local cache. Subsequent starts will be much faster.

Or, you can run directly out of the AFS release area (which may be necessary on
SunOS machines). Put this in your .login shell script:

[Sorry. Ignored \beginexample ... \endexample]
After setting your path, iman cmuclj will give an introduction to CMU CL and

man lisp will describe command line options. For SunOS installation notes, see the
README file in the SunOS release area.

See /usr/misc/.cmucl/doc for release notes and documentation. Hardcopy
documentation is available in the document room. Documentation supplements may
be available for recent additions: see the README file.

Send bug reports and questions to cmucl-bugs@cs.cmu.edu. If you send a bug
report to gripe or help, they will just forward it to this mailing list.

Net Distribution of CMU Common Lisp, Source Availability, Local Distribution
of CMU Common Lisp, Introduction

1.3 Net Distribution of CMU Common Lisp
Externally, CMU Common Lisp is only available via anonymous FTP. We donjt have
the manpower to make tapes. These are our distribution machines:

[Sorry. Ignored \beginexample ... \endexample]
Log in with the user anonymous and username@host as password (i.e. your

EMAIL address.) When you log in, the current directory should be set to the release
area. If you have any trouble with FTP access, please send mail to slisp@cs.cmu.edu.

The release area holds compressed tar files with names of the form:
[Sorry. Ignored \beginexample ... \endexample]

FTP compressed tar archives in binary mode. To extract, cd to the directory that is to
be the root of the tree, then type:

[Sorry. Ignored \beginexample ... \endexample]
The resulting tree is about 23 megabytes. For installation directions, see the section
ksite initializationl in README file at the root of the tree.

If poor network connections make it difficult to transfer a 10 meg file, the release
is also available split into five parts, with the suffix .0 to .4. To extract from multiple
files, use:

[Sorry. Ignored \beginexample ... \endexample]
The release area also contains source distributions and other binary distributions.

A listing of the current contents of the release area is in FILES. Major release
announcements will be made to comp.lang.lisp until there is enough volume to
warrant a comp.lang.lisp.cmu.

Source Availability, Command Line Options, Net Distribution of CMU Common
Lisp, Introduction

1.4 Source Availability
Lisp and documentation sources are available via anonymous FTP ftp to any CMU CS
machine. All CMU written code is public domain, but CMU CL also makes use of
two imported packages: PCL and CLX. Although these packages are copyrighted,
they may be freely distributed without any licensing agreement or fee. See the
README file in the binary distribution for up-to-date source pointers.

The release area contains a source distribution, which is an image of all the .lisp
source files used to build a particular system version:

[Sorry. Ignored \beginexample ... \endexample]

All of our files (including the release area) are actually in the AFS file system. On
the release machines, the FTP serverjs home is the release directory: /afs/cs.cmu.edu/
project/clisp/release. The actual working source areas are in other subdirectories of
clisp, and you can directly kcdl to those directories if you know the name. Due to the
way anonymous FTP access control is done, it is important to kcdl to the source
directory with a single command, and then do a kgetl operation.

Command Line Options, Credits, Source Availability, Introduction

1.5 Command Line Options
The command line syntax and environment is described in the lisp(1) man page in the
man/man1 directory of the distribution. See also cmucl(1). Currently Lisp accepts the
following switches:

-core requires an argument that should be the name of a core file. Rather than
using the default core file (/usr/misc/.lisp/lib/lisp.core), the specified core file
is loaded.

-edit specifies to enter Hemlock. A file to edit may be specified by placing the
name of the file between the program name (usually lisp) and the first switch.

-eval accepts one argument which should be a Lisp form to evaluate during the
start up sequence. The value of the form will not be printed unless it is
wrapped in a form that does output.

-hinit accepts an argument that should be the name of the hemlock init file to load
the first time the function ed is invoked. The default is to load hemlock-init.
object-type, or if that does not exist, hemlock-init.lisp from the userjs home
directory. If the file is not in the userjs home directory, the full path must be
specified.

-init accepts an argument that should be the name of an init file to load during the
normal start up sequence. The default is to load init.object-type or, if that does
not exist, init.lisp from the userjs home directory. If the file is not in the userjs
home directory, the full path must be specified.

-noinit accepts no arguments and specifies that an init file should not be loaded
during the normal start up sequence. Also, this switch suppresses the loading
of a hemlock init file when Hemlock is started up with the -edit switch.

-load accepts an argument which should be the name of a file to load into Lisp
before entering Lispjs read-eval-print loop.

-slave specifies that Lisp should start up as a islave Lisp and try to connect to an
editor Lisp. The name of the editor to connect to must be specified to find the
editorjs name, use the "Accept Slave Connections" command. The name for
the editor Lisp is of the form:

[Sorry. Ignored \beginexample ... \endexample]
where machine-name is the internet host name for the machine and socket is
the decimal number of the socket to connect to.

For more details on the use of the -edit and -slave switches, see the iHemlock Userjs
Manual.

Arguments to the above switches can be specified in one of two ways: switch=
value or switch<space>value. For example, to start up the saved core file mylisp.core
use either of the following two commands:

[Sorry. Ignored \beginexample ... \endexample]
Credits, , Command Line Options, Introduction

1.6 Credits

Since 1981 many people have contributed to the development of CMU Common Lisp.
The currently active members are:

[Sorry. Ignored \begindisplay ... \enddisplay]
Many people are voluntarily working on improving CMU Common Lisp. k*l means a
full-time CMU employee, and k+l means a part-time student employee. A partial
listing of significant past contributors follows:

[Sorry. Ignored \begindisplay ... \enddisplay]
File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/design.ms
-*- Dictionary: cmu-user -*- Design Choices and Extensions, The Debugger,

Introduction, Top

Chapter 2

Design Choices and Extensions
Several design choices in Common Lisp are left to the individual implementation, and
some essential parts of the programming environment are left undefined. This chapter
discusses the most important design choices and extensions.

[Sorry. Ignored \beginmenu ... \endmenu]
Data Types, Default Interrupts for Lisp, Design Choices and Extensions, Design

Choices and Extensions

2.1 Data Types
[Sorry. Ignored \beginmenu ... \endmenu]

Symbols, Integers, Data Types, Data Types

2.1.1 Symbols
As in , all symbols and package names are printed in lower case, as a user is likely to
type them. Internally, they are normally stored upper case only.

Integers, Floats, Symbols, Data Types

2.1.2 Integers
The fixnum type is equivalent to (signed-byte 30). Integers outside this range are
represented as a bignum or a word integer (word-integers.) Almost all integers that
appear in programs can be represented as a fixnum, so integer number consing is rare.

Floats, Characters, Integers, Data Types

2.1.3 Floats
supports two floating point formats: single-float and double-float. These are

implemented with IEEE single and double float arithmetic, respectively. short-float is
a synonym for single-float, and long-float is a synonym for double-float. The initial
value of read-default-float-format is single-float.

Both single-float and double-float are represented with a pointer descriptor, so
float operations can cause number consing. Number consing is greatly reduced if
programs are written to allow the use of non-descriptor representations (numeric-
types.)

[Sorry. Ignored \beginmenu ... \endmenu]
IEEE Special Values, Negative Zero, Floats, Floats

IEEE Special Values
supports the IEEE infinity and NaN special values. These non-numeric values will

only be generated when trapping is disabled for some floating point exception (float-
traps), so users of the default configuration need not concern themselves with special
values.

short-float-positive-infinity[extensions] short-float-negative-infinity[extensions]
single-float-positive-infinity[extensions] single-float-negative-infinity[extensions]
double-float-positive-infinity[extensions] double-float-negative-infinity[extensions]
long-float-positive-infinity[extensions] long-float-negative-infinity[extensions] The

1

values of these constants are the IEEE positive and negative infinity objects for each
float format.

float-infinity-p[extensions]x This function returns true if x is an IEEE float infinity
(of either sign.) x must be a float.

float-nan-p[extensions]x float-trapping-nan-p[extensions]x float-nan-p returns true
if x is an IEEE NaN (Not A Number) object. float-trapping-nan-p returns true only if x
is a trapping NaN. With either function, x must be a float.

Negative Zero, Denormalized Floats, IEEE Special Values, Floats

Negative Zero
The IEEE float format provides for distinct positive and negative zeros. To test the
sign on zero (or any other float), use the float-sign function. Negative zero prints as -
0.0f0 or -0.0d0.

Denormalized Floats, Floating Point Exceptions, Negative Zero, Floats

Denormalized Floats
supports IEEE denormalized floats. Denormalized floats provide a mechanism for

gradual underflow. The float-precision function returns the actual precision of a
denormalized float, which will be less than float-digits. Note that in order to generate
(or even print) denormalized floats, trapping must be disabled for the underflow
exception (float-traps.) The least-positive-format-float constants are denormalized.

float-normalized-p[extensions]x This function returns true if x is a denormalized
float. x must be a float.

Floating Point Exceptions, Floating Point Rounding Mode, Denormalized Floats,
Floats

Floating Point Exceptions
The IEEE floating point standard defines several exceptions that occur when the result
of a floating point operation is unclear or undesirable. Exceptions can be ignored, in
which case some default action is taken, such as returning a special value. When
trapping is enabled for an exception, a error is signalled whenever that exception
occurs. These are the possible floating point exceptions:

underflow This exception occurs when the result of an operation is too small to be
represented as a normalized float in its format. If trapping is enabled, the
floating-point-underflow condition is signalled. Otherwise, the operation
results in a denormalized float or zero.

overflow This exception occurs when the result of an operation is too large to be
represented as a float in its format. If trapping is enabled, the floating-point-
overflow exception is signalled. Otherwise, the operation results in the
appropriate infinity.

inexact This exception occurs when the result of a floating point operation is not
exact, i.e. the result was rounded. If trapping is enabled, the extensions:
floating-point-inexact condition is signalled. Otherwise, the rounded result is
returned.

invalid This exception occurs when the result of an operation is ill-defined, such
as (/ 0.0 0.0). If trapping is enabled, the extensions:floating-point-invalid
condition is signalled. Otherwise, a quiet NaN is returned.

divide-by-zero This exception occurs when a float is divided by zero. If trapping
is enabled, the divide-by-zero condition is signalled. Otherwise, the
appropriate infinity is returned.

Floating Point Rounding Mode, Accessing the Floating Point Modes, Floating
Point Exceptions, Floats

Floating Point Rounding Mode

1

IEEE floating point specifies four possible rounding modes:
nearest In this mode, the inexact results are rounded to the nearer of the two

possible result values. If the neither possibility is nearer, then the even
alternative is chosen. This form of rounding is also called "round to even", and
is the form of rounding specified for the round function.

positive-infinity This mode rounds inexact results to the possible value closer to
positive infinity. This is analogous to the ceiling function.

negative-infinity This mode rounds inexact results to the possible value closer to
negative infinity. This is analogous to the floor function.

zero This mode rounds inexact results to the possible value closer to zero. This is
analogous to the truncate function.

Warning:
Although the rounding mode can be changed with set-floating-point-modes, use of
any value other than the default (nearest) can cause unusual behavior, since it will
affect rounding done by system code as well as rounding in user code. In particular,
the unary round function will stop doing round-to-nearest on floats, and instead do the
selected form of rounding.

Accessing the Floating Point Modes, , Floating Point Rounding Mode, Floats

Accessing the Floating Point Modes
These functions can be used to modify or read the floating point modes:

set-floating-point-modes[extensions] :traps :rounding-mode :fast-mode :accrued-
exceptions :current-exceptions get-floating-point-modes[extensions] The keyword
arguments to set-floating-point-modes set various modes controlling how floating
point arithmetic is done:

traps A list of the exception conditions that should cause traps. Possible
exceptions are underflow, overflow, inexact, invalid and divide-by-zero.
Initially all traps except inexact are enabled. float-traps.

rounding-mode The rounding mode to use when the result is not exact. Possible
values are nearest, positive-infinity, negative-infinity and zero. Initially, the
rounding mode is nearest. See the warning in section 2.1.3.5 about use of other
rounding modes.

current-exceptions, accrued-exceptions Lists of exception keywords used to set
the exception flags. The current-exceptions are the exceptions for the previous
operation, so setting it is not very useful. The accrued-exceptions are a
cumulative record of the exceptions that occurred since the last time these
flags were cleared. Specifying () will clear any accrued exceptions.

fast-mode Set the hardwarejs "fast mode" flag, if any. When set, IEEE
conformance or debuggability may be impaired. Some machines may not have
this feature, in which case the value is always . No currently supported
machines have a fast mode.

If a keyword argument is not supplied, then the associated state is not changed.
get-floating-point-modes returns a list representing the state of the floating point

modes. The list is in the same format as the keyword arguments to set-floating-point-
modes, so apply could be used with set-floating-point-modes to restore the modes in
effect at the time of the call to get-floating-point-modes.

Characters, Array Initialization, Floats, Data Types

2.1.4 Characters
implements characters according to iCommon Lisp: the Language II. The main

difference from the first version is that character bits and font have been eliminated,

1

and the names of the types have been changed. base-character is the new equivalent of
the old string-char. In this implementation, all characters are base characters (there are
no extended characters.) Character codes range between 0 and 255, using the ASCII
encoding.

Array Initialization, , Characters, Data Types

2.1.5 Array Initialization
If no :initial-value is specified, arrays are initialized to zero.

Default Interrupts for Lisp, Packages, Data Types, Design Choices and Extensions

2.2 Default Interrupts for Lisp
CMU Common Lisp has several interrupt handlers defined when it starts up, as
follows:

SIGINT (c) causes Lisp to enter a break loop. This puts you into the debugger
which allows you to look at the current state of the computation. If you
proceed from the break loop, the computation will proceed from where it was
interrupted.

SIGQUIT (

) causes Lisp to do a throw to the top-level. This causes the current
computation to be aborted, and control returned to the top-level read-eval-
print loop.

SIGTSTP (z) causes Lisp to suspend execution and return to the Unix shell. If
control is returned to Lisp, the computation will proceed from where it was
interrupted.

SIGILL, SIGBUS, SIGSEGV, and SIGFPE cause Lisp to signal an error.
For keyboard interrupt signals, the standard interrupt character is in parentheses. Your
.login may set up different interrupt characters. When a signal is generated, there may
be some delay before it is processed since Lisp cannot be interrupted safely in an
arbitrary place. The computation will continue until a safe point is reached and then
the interrupt will be processed. signal-handlers to define your own signal handlers.

Packages, The Editor, Default Interrupts for Lisp, Design Choices and Extensions

2.3 Packages
When CMU Common Lisp is first started up, the default package is the user package.
The user package uses the common-lisp, extensions, and pcl packages. The symbols
exported from these three packages can be referenced without package qualifiers. This
section describes packages which have exported interfaces that may concern users.
The numerous internal packages which implement parts of the system are not
described here. Package nicknames are in parenthesis after the full name.

alien, c-call Export the features of the Alien foreign data structure facility (aliens.
)

pcl This package contains PCL (Portable CommonLoops), which is a portable
implementation of CLOS (the Common Lisp Object System.) This implements
most (but not all) of the features in the CLOS chapter of 2.

debug The debug package contains the command-line oriented debugger. It
exports utility various functions and switches.

debug-internals The debug-internals package exports the primitives used to write
debuggers. debug-internals.

1

extensions (ext) The extensions packages exports local extensions to Common
Lisp that are documented in this manual. Examples include the save-lisp
function and time parsing.

hemlock (ed) The hemlock package contains all the code to implement Hemlock
commands. The hemlock package currently exports no symbols.

hemlock-internals (hi) The hemlock-internals package contains code that
implements low level primitives and exports those symbols used to write
Hemlock commands.

keyword The keyword package contains keywords (e.g., start). All symbols in the
keyword package are exported and evaluate to themselves (i.e., the value of the
symbol is the symbol itself).

profile The profile package exports a simple run-time profiling facility (profiling)
.

common-lisp (cl lisp) The common-lisp package exports all the symbols defined
by iCommon Lisp: the Language and only those symbols. Strictly portable
Lisp code will depend only on the symbols exported from the lisp package.

unix, mach These packages export system call interfaces to generic BSD Unix
and Mach (unix-interface).

system (sys) The system package contains functions and information necessary for
system interfacing. This package is used by the lisp package and exports
several symbols that are necessary to interface to system code.

common-lisp-user (user cl-user) The common-lisp-user package is the default
package and is where a userjs code and data is placed unless otherwise
specified. This package exports no symbols.

xlib The xlib package contains the Common Lisp X interface (CLX) to the X11
protocol. This is mostly Lisp code with a couple of functions that are defined
in C to connect to the server.

wire The wire package exports a remote procedure call facility (remote).
The Editor, Garbage Collection, Packages, Design Choices and Extensions

2.4 The Editor
The ed function invokes the Hemlock editor which is described in iHemlock Userjs
Manual and iHemlock Command Implementorjs Manual. Most users at CMU prefer
to use Hemlockjs slave mechanism which provides an interactive buffer for the read-
eval-print loop and editor commands for evaluating and compiling text from a buffer
into the slave . Since the editor runs in the , using slaves keeps users from trashing
their editor by developing in the same with .

Garbage Collection, Describe, The Editor, Design Choices and Extensions

2.5 Garbage Collection
CMU Common Lisp uses a stop-and-copy garbage collector that compacts the items
in dynamic space every time it runs. Most users cause the system to garbage collect
(GC) frequently, long before space is exhausted. With 16 or 24 megabytes of memory,
causing GCjs more frequently on less garbage allows the system to GC without much
(if any) paging.

With the default value for the following variable, you can expect a GC to take
about one minute of elapsed time on a 6 megabyte machine running X as well as Lisp.
On machines with 8 megabytes or more of memory a GC should run without much (if
any) paging. GCjs run more frequently but tend to take only about 5 seconds.

1

The following functions invoke the garbage collector or control whether automatic
garbage collection is in effect:

gc[extensions] This function runs the garbage collector. If ext:*gc-verbose* is
non-, then it invokes ext:*gc-notify-before* before GCjing and ext:*gc-notify-after*
afterwards.

gc-off[extensions] This function inhibits automatic garbage collection. After
calling it, the system will not GC unless you call ext:gc or ext:gc-on.

gc-on[extensions] This function reinstates automatic garbage collection. If the
system would have GCjed while automatic GC was inhibited, then this will call ext:
gc.

The following variables control the behavior of the garbage collector:
bytes-consed-between-gcs[extensions] CMU Common Lisp automatically GCjs

whenever the amount of memory allocated to dynamic objects exceeds the value of an
internal variable. After each GC, the system sets this internal variable to the amount of
dynamic space in use at that point plus the value of the variable ext:*bytes-consed-
between-gcs*. The default value is 2000000.

gc-verbose[extensions] This variable controls whether ext:gc invokes the functions
in ext:*gc-notify-before* and ext:*gc-notify-after*. If *gc-verbose* is , ext:gc
foregoes printing any messages. The default value is T.

gc-notify-before[extensions] This variablejs value is a function that should notify
the user that the system is about to GC. It takes one argument, the amount of dynamic
space in use before the GC measured in bytes. The default value of this variable is a
function that prints a message similar to the following:

[Sorry. Ignored \begindisplay ... \enddisplay]
gc-notify-after[extensions] This variablejs value is a function that should notify

the user when a GC finishes. The function must take three arguments, the amount of
dynamic spaced retained by the GC, the amount of dynamic space freed, and the new
threshold which is the minimum amount of space in use before the next GC will
occur. All values are byte quantities. The default value of this variable is a function
that prints a message similar to the following:

[Sorry. Ignored \begindisplay ... \enddisplay]
Note that a garbage collection will not happen at exactly the new threshold printed

by the default ext:*gc-notify-after* function. The system periodically checks whether
this threshold has been exceeded, and only then does a garbage collection.

gc-inhibit-hook[extensions] This variablejs value is either a function of one
argument or . When the system has triggered an automatic GC, if this variable is a
function, then the system calls the function with the amount of dynamic space
currently in use (measured in bytes). If the function returns , then the GC occurs;
otherwise, the system inhibits automatic GC as if you had called ext:gc-off. The writer
of this hook is responsible for knowing when automatic GC has been turned off and
for calling or providing a way to call ext:gc-on. The default value of this variable is .

before-gc-hooks[extensions] after-gc-hooks[extensions] These variablesj values
are lists of functions to call before or after any GC occurs. The system provides these
purely for side-effect, and the functions take no arguments.

Describe, The Inspector, Garbage Collection, Design Choices and Extensions

2.6 Describe
In addition to the basic function described below, there are a number of switches and
other things that can be used to control describejs behavior.

describe object &optional stream The describe function prints useful information
about object on stream, which defaults to *standard-output*. For any object, describe
will print out the type. Then it prints other information based on the type of object.
The types which are presently handled are:

hash-table describe prints the number of entries currently in the hash table and the
number of buckets currently allocated.

1

function describe prints a list of the functionjs name (if any) and its formal
parameters. If the name has function documentation, then it will be printed. If
the function is compiled, then the file where it is defined will be printed as
well.

fixnum describe prints whether the integer is prime or not.
symbol The symboljs value, properties, and documentation are printed. If the

symbol has a function definition, then the function is described.
If there is anything interesting to be said about some component of the object, describe
will invoke itself recursively to describe that object. The level of recursion is indicated
by indenting output.

describe-level[extensions] The maximum level of recursive description allowed.
Initially two.

describe-indentation[extensions] The number of spaces to indent for each level of
recursive description, initially three.

describe-print-level[extensions] describe-print-length[extensions] The values of *
print-level* and *print-length* during description. Initially two and five.

The Inspector, Load, Describe, Design Choices and Extensions

2.7 The Inspector
has both a graphical inspector that uses X windows and a simple terminal-based

inspector.
inspect &optional object Inspect calls the inspector on the optional argument

object. If object is unsupplied, inspect immediately returns . Otherwise, the behavior
of inspect depends on whether Lisp is running under X. When inspect is eventually
exited, it returns some selected Lisp object.

[Sorry. Ignored \beginmenu ... \endmenu]
The Windowing Inspector, The TTY Inspector, The Inspector, The Inspector

2.7.1 The Windowing Inspector
If X is available, inspect creates an X window and displays object in the window.
While inspect is running and the cursor is in the inspectorjs X window, mouse clicks
and keyboard input have the following meaning:

Left When the left mouse button is clicked over a component object, that object
will be inspected in the current inspector window.

Middle When the middle mouse button is clicked over a component object,
inspect is exited returning the component as the result. All the new inspector
windows are deleted.

Shift Middle When the shift key is depressed and the middle mouse button is
clicked over a component object, inspect exits and returns the component as
the result. All the inspector windows are left displayed on the screen.

Right When the right mouse button is clicked over a component object, that object
will be inspected in a new inspector window.

d, D When either d or D is typed, the current window is deleted. If there are no
more windows, then inspect exits and returns the original object.

h, H, ? When any of h, H, or ? are typed while in an inspector window, a new
window with help information is displayed.

m, M When either m or M is typed, a component object may be modified. The
cursor changes to an arrow with an M beside it. Clicking any mouse button
while the mouse is over a component will select that component as the
destination for modification. If m was typed, the source object is also selected
by the mouse which is indicated by an S beside the arrow in the cursor. If M

1

was typed, the source object will be prompted for on the *query-io* stream.
The source object replaces the destination object. While choosing the
destination or source with the mouse, the operation can be aborted by type q or
Q.

q, Q When either q or Q is typed, inspect exits and returns the original object. All
new inspector windows are deleted.

p, P When either p or P is typed, inspect exits and returns the original object. All
the inspector windows are left on the screen.

r, R When either r or R is typed, the current inspector display is recomputed. This
is necessary to maintain a consistent display for an object that may have
changed since the display was originally computed.

u, U When either u or U is typed, the object of which the current object is a
component is displayed. This is the inverse operation to clicking the left mouse
button over a component object. If the window is currently displaying the top
level object, nothing changes.

When the cursor is over a component object, the object is highlighted with a
surrounding box.

The TTY Inspector, , The Windowing Inspector, The Inspector

2.7.2 The TTY Inspector
If X is unavailable, a terminal inspector is invoked. The TTY inspector is a crude
interface to describe which allows objects to be traversed and maintains a history. This
inspector prints information about and object and a numbered list of the components
of the object. The command-line based interface is a normal readmevalmprint loop,
but an integer n descends into the njth component of the current object, and symbols
with these special names are interpreted as commands:

U Move back to the enclosing object. As you descend into the components of an
object, a stack of all the objects previously seen is kept. This command pops
you up one level of this stack.

Q, E Return the current object from inspect.
R Recompute object display, and print again. Useful if the object may have

changed.
D Display again without recomputing.
H, ? Show help message.
Load, The Reader, The Inspector, Design Choices and Extensions

2.8 Load
loadfilename :verbose :print :if-does-not-exist :if-source-newer :contents As in
standard Common Lisp, this function loads a file containing source or object code into
the running Lisp. Several CMU extensions have been made to load to conveniently
support a variety of program file organizations. filename may be a wildcard pathname
such as *.lisp, in which case all matching files are loaded.

If filename has a pathname-type (or extension), then that exact file is loaded. If the
file has no extension, then this tells load to use a heuristic to load the krightl file. The
load-source-types and *load-object-types* variables below are used to determine
the default source and object file types. If only the source or the object file exists (but
not both), then that file is quietly loaded. Similarly, if both the source and object file
exist, and the object file is newer than the source file, then the object file is loaded.
The value of the if-source-newer argument is used to determine what action to take
when both the source and object files exist, but the object file is out of date:

1

:load-object The object file is loaded even though the source file is newer.
:load-source The source file is loaded instead of the older object file.
:compile The source file is compiled and then the new object file is loaded.
:query The user is asked a yes or no question to determine whether the source or

object file is loaded.
This argument defaults to the value of ext:*load-if-source-newer* (initially :load-
object.)

The contents argument can be used to override the heuristic (based on the file
extension) that normally determines whether to load the file as a source file or an
object file. If non-null, this argument must be either :source or :binary, which forces
loading in source and binary mode, respectively. You really shouldnjt ever need to use
this argument.

load-source-types[extensions] load-object-types[extensions] These variables are
lists of possible pathname-type values for source and object files to be passed to load.
These variables are only used when the file passed to load has no type; in this case, the
possible source and object types are used to default the type in order to determine the
names of the source and object files.

load-if-source-newer[extensions] This variable determines the default value of the
if-source-newer argument to load. Its initial value is :load-object.

The Reader, Running Programs from Lisp, Load, Design Choices and Extensions

2.9 The Reader
ignore-extra-close-parentheses[extensions] If this variable is (the default), then the
reader merely prints a warning when an extra close parenthesis is detected (instead of
signalling an error.)

Running Programs from Lisp, Saving a Core Image, The Reader, Design Choices
and Extensions

2.10 Running Programs from Lisp
It is possible to run programs from Lisp by using the following function.

run-program[extensions] program args :env :wait :pty :input :if-input-does-not-
exist :output ...

Run-program runs program in a child process. Program should be a pathname or
string naming the program. Args should be a list of strings which this passes to
program as normal Unix parameters. For no arguments, specify args as . The value
returned is either a process structure or . The process interface follows the description
of run-program. If run-program fails to fork the child process, it returns .

Except for sharing file descriptors as explained in keyword argument descriptions,
run-program closes all file descriptors in the child process before running the program.
When you are done using a process, call process-close to reclaim system resources.
You only need to do this when you supply stream for one of input, output, or error, or
you supply pty non-. You can call process-close regardless of whether you must to
reclaim resources without penalty if you feel safer.

run-program accepts the following keyword arguments:
env This is an a-list mapping keywords and simple-strings. The default is ext:*

environment-list*. If env is specified, run-program uses the value given and
does not combine the environment passed to Lisp with the one specified.

wait If non- (the default), wait until the child process terminates. If , continue
running Lisp while the child process runs.

pty This should be one of , , or a stream. If specified non-, the subprocess executes
under a Unix iPTY. If specified as a stream, the system collects all output to
this pty and writes it to this stream. If specified as , the process-pty slot

1

contains a stream from which you can read the programjs output and to which
you can write input for the program. The default is .

input This specifies how the program gets its input. If specified as a string, it is
the name of a file that contains input for the child process. run-program opens
the file as standard input. If specified as (the default), then standard input is
the file /dev/null. If specified as , the program uses the current standard input.
This may cause some confusion if wait is since two processes may use the
terminal at the same time. If specified as stream, then the process-input slot
contains an output stream. Anything written to this stream goes to the program
as input. i:Input may also be an input stream that already contains all the input
for the process. In this case run-program reads all the input from this stream
before returning, so this cannot be used to interact with the process.

if-input-does-not-exist This specifies what to do if the input file does not exist.
The following values are valid: (the default) causes run-program to return
without doing anything; create creates the named file; and error signals an
error.

output This specifies what happens with the programjs output. If specified as a
pathname, it is the name of a file that contains output the program writes to its
standard output. If specified as (the default), all output goes to /dev/null. If
specified as , the program writes to the Lisp processjs standard output. This
may cause confusion if wait is since two processes may write to the terminal
at the same time. If specified as stream, then the process-output slot contains
an input stream from which you can read the programjs output.

if-output-exists This specifies what to do if the output file already exists. The
following values are valid: causes run-program to return without doing
anything; error (the default) signals an error; supersede overwrites the current
file; and append appends all output to the file.

error This is similar to output, except the file becomes the programjs standard
error. Additionally, error can be output in which case the programjs error
output is routed to the same place specified for output. If specified as stream,
the process-error contains a stream similar to the process-output slot when
specifying the output argument.

if-error-exists This specifies what to do if the error output file already exists. It
accepts the same values as if-output-exists.

status-hook This specifies a function to call whenever the process changes status.
This is especially useful when specifying wait as . The function takes the
process as a required argument.

before-execve This specifies a function to run in the child process before it
becomes the program to run. This is useful for actions such as authenticating
the child process without modifying the parent Lisp process.

[Sorry. Ignored \beginmenu ... \endmenu]
Process Accessors, , Running Programs from Lisp, Running Programs from Lisp

2.10.1 Process Accessors
The following functions interface the process returned by run-program:

process-p[extensions]thing This function returns if thing is a process. Otherwise it
returns

process-pid[extensions]process This function returns the process ID, an integer,
for the process.

process-status[extensions]process This function returns the current status of
process, which is one of :running, :stopped, :exited, or :signaled.

1

process-exit-code[extensions]process This function returns either the exit code for
process, if it is :exited, or the termination signal process if it is :signaled. The result is
undefined for processes that are still alive.

process-core-dumped[extensions]process This function returns if someone used a
Unix signal to terminate the process and caused it to dump a Unix core image.

process-pty[extensions]process This function returns either the two-way stream
connected to processjs Unix iPTY connection or if there is none.

process-input[extensions]process process-output[extensions]process process-error
[extensions]process If the corresponding stream was created, these functions return the
input, output or error file descriptor. is returned if there is no stream.

process-status-hook[extensions]process This function returns the current function
to call whenever processjs status changes. This function takes the process as a
required argument. process-status-hook is setfjable.

process-plist[extensions]process This function returns annotations supplied by
users, and it is setfjable. This is available solely for users to associate information with
process without having to build a-lists or hash tables of process structures.

process-wait[extensions] process &optional check-for-stopped This function waits
for process to finish. If check-for-stopped is non-, this also returns when process stops.

process-kill[extensions] iprocess signal &optional whom This function sends the
Unix signal to process. Signal should be the number of the signal or a keyword with
the Unix name (for example, sigsegv). Whom should be one of the following:

pid This is the default, and it indicates sending the signal to process only.
process-group This indicates sending the signal to processjs group.
pty-process-group This indicates sending the signal to the process group

currently in the foreground on the Unix iPTY connected to process. This last
option is useful if the running program is a shell, and you wish to signal the
program running under the shell, not the shell itself. If process-pty of process
is , using this option is an error.

process-alive-p[extensions]process This function returns if processjs status is
either :running or :stopped.

process-close[extensions]process This function closes all the streams associated
with process. When you are done using a process, call this to reclaim system
resources.

Saving a Core Image, Search Lists, Running Programs from Lisp, Design Choices
and Extensions

2.11 Saving a Core Image
A mechanism has been provided to save a running Lisp core image and to later restore
it. This is convenient if you donjt want to load several files into a Lisp when you first
start it up. The main problem is the large size of each saved Lisp image, typically at
least 20 megabytes.

save-lisp[extensions] file :purify :root-structures :init-function :load-init-file :
print-herald :process-command-line The save-lisp function saves the state of the
currently running Lisp core image in file. The keyword arguments have the following
meaning:

purify If non-NIL (the default), the core image is purified before it is saved. This
means moving accessible Lisp objects from dynamic space into read-only and
static space. This reduces the amount of work the garbage collector must do
when the resulting core image is being run. Also, if more than one Lisp is
running on the same machine, this maximizes the amount of memory that can
be shared between the two processes. Objects in read-only and static space can
never be reclaimed, even if all pointers to them are dropped.

root-structures This should be a list of the main entry points for the resulting core
image. The purification process tries to localize symbols, functions, etc., in the

1

core image so that paging performance is improved. The default value is NIL
which means that Lisp objects will still be localized but probably not as
optimally as they could be. This argument has no meaning if purify is NIL.

init-function This is a function which is called when the saved core is resumed.
The default function simply aborts to the top-level read-eval-print loop. If the
function returns, it will be the value of save-lisp.

load-init-file If non-NIL, then load an init file; either the one specified on the
command line or "init.fasl-type", or, if "init.fasl-type" does not exist, init.lisp
from the userjs home directory. If the init file is found, it is loaded into the
resumed core file before the read-eval-print loop is entered.

print-herald If non-NIL, then print out the standard Lisp herald when starting.
process-command-line If non-NIL, processes the command line switches and

performs the appropriate actions.
To resume a saved file, type:

[Sorry. Ignored \beginexample ... \endexample]
Search Lists, Time Parsing and Formatting, Saving a Core Image, Design Choices

and Extensions

2.12 Search Lists
Search lists are an extension to Common Lisp pathnames. Search lists are used for two
purposes:

� They provide a convenient shorthand for commonly used directory names,
and

� They allow the abstract (directory structure independent) specification of file
locations in program pathname constants (similar to logical pathnames.)

Each search list has an associated list of directories (represented as pathnames with no
name or type component.) The namestring for any relative pathname may be prefixed
with kslist:l, indicating that the pathname is relative to the search list slist (instead of
to the current working directory.) Once qualified with a search list, the pathname is no
longer considered to be relative.

When a search list qualified pathname is passed to a file-system operation such as
open, load or truename, each directory in the search list is successively used as the
root of the pathname until the file is located. When a file is written to a search list
directory, the file is always written to the first directory in the list.

search-list[extensions]name This function returns the list of directories associated
with the search list name. If name is not a defined search list, then an error is
signalled. When set with setf, the list of directories is changed to the new value. If the
new value is just a namestring or pathname, then it is interpreted as a one-element list.
Note that (unlike Unix pathnames), search list names are case-insensitive.

search-list-defined-p[extensions]name clear-search-list[extensions]name search-
list-defined-p returns if name is a defined search list name, otherwise. clear-search-
list make the search list name undefined.

enumerate-search-list[extensions] (var pathname result) form
This macro provides an interface to search list resolution. The body forms are

executed with var bound to each successive possible expansion for name. If name
does not contain a search-list, then the body is executed exactly once. Everything is
wrapped in a block named , so return can be used to terminate early. The result form
(default) is evaluated to determine the result of the iteration.

[Sorry. Ignored \beginmenu ... \endmenu]
Search List Example, , Search Lists, Search Lists

2.12.1 Search List Example

1

The search list code: can be defined as follows:
[Sorry. Ignored \beginexample ... \endexample]

It is now possible to use code: as an abbreviation for the directory /usr/lisp/code/ in all
file operations. For example, you can now specify code:eval.lisp to refer to the file /
usr/lisp/code/eval.lisp.

To obtain the value of a search-list name, use the function search-list as follows:
[Sorry. Ignored \beginexample ... \endexample]

Where name is the name of a search list as described above. For example, calling ext:
search-list on code: as follows:

[Sorry. Ignored \beginexample ... \endexample]
returns the list ("/usr/lisp/code/").

Time Parsing and Formatting, Lisp Library, Search Lists, Design Choices and
Extensions

2.13 Time Parsing and Formatting
time parsing time formatting Functions are provided to allow parsing strings
containing time information and printing time in various formats are available.

parse-time[extensions] time-string :error-on-mismatch :default-seconds :default-
minutes :default-hours :default-day ... parse-time accepts a string containing a time (e.
g., "Jan 12, 1952") and returns the universal time if it is successful. If it is
unsuccessful and the keyword argument error-on-mismatch is non-, it signals an error.
Otherwise it returns . The other keyword arguments have the following meaning:

default-seconds specifies the default value for the seconds value if one is not
provided by time-string. The default value is 0.

default-minutes specifies the default value for the minutes value if one is not
provided by time-string. The default value is 0.

default-hours specifies the default value for the hours value if one is not provided
by time-string. The default value is 0.

default-day specifies the default value for the day value if one is not provided by
time-string. The default value is the current day.

default-month specifies the default value for the month value if one is not
provided by time-string. The default value is the current month.

default-year specifies the default value for the year value if one is not provided by
time-string. The default value is the current year.

default-zone specifies the default value for the time zone value if one is not
provided by time-string. The default value is the current time zone.

default-weekday specifies the default value for the day of the week if one is not
provided by time-string. The default value is the current day of the week.

Any of the above keywords can be given the value current which means to use the
current value as determined by a call to the operating system.

format-universal-time[extensions] idest universal-time :timezone :style :date-first :
print-seconds ...

format-decoded-time[extensions] idest seconds minutes hours day month year
&key ...

format-universal-time formats the time specified by universal-time. format-
decoded-time formats the time specified by seconds, minutes, hours, day, month, and
year. Dest is any destination accepted by the format function. The keyword arguments
have the following meaning:

timezone is an integer specifying the hours west of Greenwich. i:Timezone
defaults to the current time zone.

style specifies the style to use in formatting the time. The legal values are:

1

short specifies to use a numeric date.
long specifies to format months and weekdays as words instead of

numbers.
abbreviated is similar to long except the words are abbreviated.
government is similar to abbreviated, except the date is of the form "day

month year" instead of "month day, year".
date-first if non- (default) will place the date first. Otherwise, the time is placed

first.
print-seconds if non- (default) will format the seconds as part of the time.

Otherwise, the seconds will be omitted.
print-meridian if non- (default) will format "AM" or "PM" as part of the time.

Otherwise, the "AM" or "PM" will be omitted.
print-timezone if non- (default) will format the time zone as part of the time.

Otherwise, the time zone will be omitted.
print-seconds if non- (default) will format the seconds as part of the time.

Otherwise, the seconds will be omitted.
print-weekday if non- (default) will format the weekday as part of date.

Otherwise, the weekday will be omitted.
Lisp Library, , Time Parsing and Formatting, Design Choices and Extensions

2.14 Lisp Library
The CMU Common Lisp project maintains a collection of useful or interesting
programs written by users of our system. The library is in lib/contrib/. Two files there
that users should read are:

CATALOG.TXT This file contains a page for each entry in the library. It
contains information such as the author, portability or dependency issues, how
to load the entry, etc.

READ-ME.TXT This file describes the libraryjs organization and all the possible
pieces of information an entryjs catalog description could contain.

Hemlock has a command Library Entry that displays a list of the current library
entries in an editor buffer. There are mode specific commands that display catalog
descriptions and load entries. This is a simple and convenient way to browse the
library.

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/debug.ms
The Debugger, The Compiler, Design Choices and Extensions, Top

1

Chapter 3

The Debugger
-*- Dictionary: cmu-user -*-

B
debugger

[Sorry. Ignored \beginmenu ... \endmenu]
Debugger Introduction, The Command Loop, The Debugger, The Debugger

3.1 Debugger Introduction
The debugger is unique in its level of support for source-level debugging of compiled
code. Although some other debuggers allow access of variables by name, this seems to
be the first debugger that:

� Tells you when a variable doesnjt have a value because it hasnjt been
initialized yet or has already been deallocated, or

� Can display the precise source location corresponding to a code location in
the debugged program.

These features allow the debugging of compiled code to be made almost
indistinguishable from interpreted code debugging.

The debugger is an interactive command loop that allows a user to examine the
function call stack. The debugger is invoked when:

� A serious-condition is signalled, and it is not handled, or
� error is called, and the condition it signals is not handled, or
� The debugger is explicitly invoked with the break or debug functions.

When you enter the debugger, it looks something like this:
[Sorry. Ignored \beginexample ... \endexample]

The first group of lines describe what the error was that put us in the debugger. In this
case car was called on 3. After Restarts: is a list of all the ways that we can restart
execution after this error. In this case, the only option is to return to top-level. After
printing its banner, the debugger prints the current frame and the debugger prompt.

The Command Loop, Stack Frames, Debugger Introduction, The Debugger

3.2 The Command Loop
The debugger is an interactive read-eval-print loop much like the normal top-level, but
some symbols are interpreted as debugger commands instead of being evaluated. A
debugger command starts with the symbol name of the command, possibly followed
by some arguments on the same line. Some commands prompt for additional input.
Debugger commands can be abbreviated by any unambiguous prefix: help can be
typed as h, he, etc. For convenience, some commands have ambiguous one-letter
abbreviations: f for frame.

The package is not significant in debugger commands; any symbol with the name
of a debugger command will work. If you want to show the value of a variable that
happens also to be the name of a debugger command, you can use the list-locals

2

command or the debug:var function, or you can wrap the variable in a progn to hide it
from the command loop.

The debugger prompt is "frame]", where frame is the number of the current frame.
Frames are numbered starting from zero at the top (most recent call), increasing down
to the bottom. The current frame is the frame that commands refer to. The current
frame also provides the lexical environment for evaluation of non-command forms.

evaluationdebugger The debugger evaluates forms in the lexical environment of
the functions being debugged. The debugger can only access variables. You canjt go
or return-from into a function, and you canjt call local functions. Special variable
references are evaluated with their current value (the innermost binding around the
debugger invocation) you donjt get the value that the special had in the current frame.
debug-vars for more information on debugger variable access.

Stack Frames, Variable Access, The Command Loop, The Debugger

3.3 Stack Frames
stack frames framesstack

A stack frame is the run-time representation of a call to a function; the frame
stores the state that a function needs to remember what it is doing. Frames have:

� Variables (debug-vars), which are the values being operated on, and
� Arguments to the call (which are really just particularly interesting variables)

, and
� A current location (source-locations), which is the place in the program

where the function was running when it stopped to call another function, or
because of an interrupt or error.

[Sorry. Ignored \beginmenu ... \endmenu]
Stack Motion, How Arguments are Printed, Stack Frames, Stack Frames

3.3.1 Stack Motion
These commands move to a new stack frame and print the name of the function and
the values of its arguments in the style of a Lisp function call:

up Move up to the next higher frame. More recent function calls are considered to
be higher on the stack.

down Move down to the next lower frame.
top Move to the highest frame.
bottom Move to the lowest frame.
frame [n] Move to the frame with the specified number. Prompts for the number

if not supplied.

[Sorry. Ignored \beginignore ... \endignore]
How Arguments are Printed, Function Names, Stack Motion, Stack Frames

3.3.2 How Arguments are Printed
A frame is printed to look like a function call, but with the actual argument values in
the argument positions. So the frame for this call in the source:

[Sorry. Ignored \beginlisp ... \endlisp]
would look like this:

[Sorry. Ignored \beginexample ... \endexample]
All keyword and optional arguments are displayed with their actual values; if the
corresponding argument was not supplied, the value will be the default. So this call:

2

[Sorry. Ignored \beginlisp ... \endlisp]
would look like this:

[Sorry. Ignored \beginexample ... \endexample]
And this call:

[Sorry. Ignored \beginlisp ... \endlisp]
would look like this:

[Sorry. Ignored \beginexample ... \endexample]
The arguments to a function call are displayed by accessing the argument

variables. Although those variables are initialized to the actual argument values, they
can be set inside the function; in this case the new value will be displayed.

rest arguments are handled somewhat differently. The value of the rest
argument variable is displayed as the spread-out arguments to the call, so:

[Sorry. Ignored \beginlisp ... \endlisp]
would look like this:

[Sorry. Ignored \beginexample ... \endexample]
Rest arguments cause an exception to the normal display of keyword arguments in
functions that have both rest
and key
arguments. In this case, the keyword argument variables are not displayed at all; the
rest arg is displayed instead. So for these functions, only the keywords actually
supplied will be shown, and the values displayed will be the argument values, not
values of the (possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be
deleted. The variable value is then unavailable, so the debugger prints <unused-arg>
instead of the value. Similarly, if for any of a number of reasons (described in more
detail in section 3.4) the value of the variable is unavailable or not known to be
available, then <unavailable-arg> will be printed instead of the argument value.

Printing of argument values is controlled by *debug-print-level* and debug-print-
length.

Function Names, Funny Frames, How Arguments are Printed, Stack Frames

3.3.3 Function Names
functionnames namesfunction

If a function is defined by defun, labels, or flet, then the debugger will print the
actual function name after the open parenthesis, like:

[Sorry. Ignored \beginexample ... \endexample]
Otherwise, the function name is a string, and will be printed in quotes:

[Sorry. Ignored \beginexample ... \endexample]
This string name is derived from the defmumble form that encloses or expanded into
the lambda, or the outermost enclosing form if there is no defmumble.

Funny Frames, Debug Tail Recursion, Function Names, Stack Frames

3.3.4 Funny Frames
external entry points entry pointsexternal block compilationdebugger implications
externalstack frame kind optionalstack frame kind cleanupstack frame kind

Sometimes the evaluator introduces new functions that are used to implement a
user function, but are not directly specified in the source. The main place this is done
is for checking argument type and syntax. Usually these functions do their thing and
then go away, and thus are not seen on the stack in the debugger. But when you get
some sort of error during lambda-list processing, you end up in the debugger on one of
these funny frames.

These funny frames are flagged by printing "[keyword]" after the parentheses. For
example, this call:

[Sorry. Ignored \beginlisp ... \endlisp]

2

will look like this:
[Sorry. Ignored \beginexample ... \endexample]

And this call:
[Sorry. Ignored \beginlisp ... \endlisp]

would look like this:
[Sorry. Ignored \beginexample ... \endexample]

As you can see, these frames have only a vague resemblance to the original call.
Fortunately, the error message displayed when you enter the debugger will usually tell
you what problem is (in these cases, too many arguments and odd keyword arguments.
) Also, if you go down the stack to the frame for the calling function, you can display
the original source (source-locations.)

With recursive or block compiled functions (block-compilation), an :EXTERNAL
frame may appear before the frame representing the first call to the recursive function
or entry to the compiled block. This is a consequence of the way the compiler does
block compilation: there is nothing odd with your program. You will also see :
CLEANUP frames during the execution of unwind-protect cleanup code. Note that
inline expansion and open-coding affect what frames are present in the debugger, see
sections 3.6 and 4.8.

Debug Tail Recursion, Unknown Locations and Interrupts, Funny Frames, Stack
Frames

3.3.5 Debug Tail Recursion
tail recursion recursiontail

Both the compiler and the interpreter are "properly tail recursive." If a function
call is in a tail-recursive position, the stack frame will be deallocated iat the time of
the call, rather than after the call returns. Consider this backtrace:

[Sorry. Ignored \beginexample ... \endexample]
Because of tail recursion, it is not necessarily the case that FOO directly called BAR.
It may be that FOO called some other function FOO2 which then called BAR tail-
recursively, as in this example:

[Sorry. Ignored \beginexample ... \endexample]
Usually the elimination of tail-recursive frames makes debugging more pleasant,

since theses frames are mostly uninformative. If there is any doubt about how one
function called another, it can usually be eliminated by finding the source location in
the calling frame (section 3.5.)

For a more thorough discussion of tail recursion, tail-recursion.
Unknown Locations and Interrupts, , Debug Tail Recursion, Stack Frames

3.3.6 Unknown Locations and Interrupts
unknown code locations locationsunknown interrupts errorsrun-time

The debugger operates using special debugging information attached to the
compiled code. This debug information tells the debugger what it needs to know about
the locations in the code where the debugger can be invoked. If the debugger
somehow encounters a location not described in the debug information, then it is said
to be unknown. If the code location for a frame is unknown, then some variables may
be inaccessible, and the source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:
� There is inadequate debug information due to the value of the debug

optimization quality. debugger-policy.
� The debugger was entered because of an interrupt such as \s\up5(C).
� A hardware error such as "bus error" occurred in code that was compiled

unsafely due to the value of the safety optimization quality. optimize-
declaration.

2

In the last two cases, the values of argument variables are accessible, but may be
incorrect. debug-var-validity for more details on when variable values are accessible.

It is possible for an interrupt to happen when a function call or return is in
progress. The debugger may then flame out with some obscure error or insist that the
bottom of the stack has been reached, when the real problem is that the current stack
frame canjt be located. If this happens, return from the interrupt and try again.

When running interpreted code, all locations should be known. However, an
interrupt might catch some subfunction of the interpreter at an unknown location. In
this case, you should be able to go up the stack a frame or two and reach an interpreted
frame which can be debugged.

Variable Access, Source Location Printing, Stack Frames, The Debugger

3.4 Variable Access
variablesdebugger access debug variables

There are three ways to access the current framejs local variables in the debugger.
The simplest is to type the variablejs name into the debuggerjs read-eval-print loop.
The debugger will evaluate the variable reference as though it had appeared inside that
frame.

The debugger doesnjt really understand lexical scoping; it has just one namespace
for all the variables in a function. If a symbol is the name of multiple variables in the
same function, then the reference appears ambiguous, even though lexical scoping
specifies which value is visible at any given source location. If the scopes of the two
variables are not nested, then the debugger can resolve the ambiguity by observing
that only one variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small
integer identifier. The debug:var function and the list-locals command use this
identifier to distinguish between ambiguous variables:

list-locals prefix
This command prints the name and value of all variables in the current frame
whose name has the specified prefix. prefix may be a string or a symbol. If no
prefix is given, then all available variables are printed. If a variable has a
potentially ambiguous name, then the name is printed with a "#identifier"
suffix, where identifier is the small integer used to make the name unique.

var[debug]name &optional identifier This function returns the value of the
variable in the current frame with the specified name. If supplied, identifier
determines which value to return when there are ambiguous variables.

When name is a symbol, it is interpreted as the symbol name of the variable, i.e.
the package is significant. If name is an uninterned symbol (gensym), then return the
value of the uninterned variable with the same name. If name is a string, debug:var
interprets it as the prefix of a variable name, and must unambiguously complete to the
name of a valid variable.

This function is useful mainly for accessing the value of uninterned or ambiguous
variables, since most variables can be evaluated directly.

[Sorry. Ignored \beginmenu ... \endmenu]
Variable Value Availability, Note On Lexical Variable Access, Variable Access,

Variable Access

3.4.1 Variable Value Availability
availability of debug variables validity of debug variables debug optimization quality

The value of a variable may be unavailable to the debugger in portions of the
program where says that the variable is defined. If a variable value is not available,
the debugger will not let you read or write that variable. With one exception, the

2

debugger will never display an incorrect value for a variable. Rather than displaying
incorrect values, the debugger tells you the value is unavailable.

The one exception is this: if you interrupt (e.g., with \s\up5(C)) or if there is an
unexpected hardware error such as "bus error" (which should only happen in
unsafe code), then the values displayed for arguments to the interrupted frame
might be incorrect.Since the location of an interrupt or hardware error will always be an unknown
location (unknown-locations), non-argument variable values will never be
available in the interrupted frame. This exception applies only to the interrupted
frame: any frame farther down the stack will be fine.

The value of a variable may be unavailable for these reasons:
� The value of the debug optimization quality may have omitted debug

information needed to determine whether the variable is available. Unless a
variable is an argument, its value will only be available when debug is at least
2.

� The compiler did lifetime analysis and determined that the value was no
longer needed, even though its scope had not been exited. Lifetime analysis is
inhibited when the debug optimization quality is 3.

� The variablejs name is an uninterned symbol (gensym). To save space, the
compiler only dumps debug information about uninterned variables when the
debug optimization quality is 3.

� The framejs location is unknown (unknown-locations) because the debugger
was entered due to an interrupt or unexpected hardware error. Under these
conditions the values of arguments will be available, but might be incorrect.
This is the exception above.

� The variable was optimized out of existence. Variables with no reads are
always optimized away, even in the interpreter. The degree to which the
compiler deletes variables will depend on the value of the compile-speed
optimization quality, but most source-level optimizations are done under all
compilation policies.

Since it is especially useful to be able to get the arguments to a function, argument
variables are treated specially when the speed optimization quality is less than 3 and
the debug quality is at least 1. With this compilation policy, the values of argument
variables are almost always available everywhere in the function, even at unknown
locations. For non-argument variables, debug must be at least 2 for values to be
available, and even then, values are only available at known locations.

Note On Lexical Variable Access, , Variable Value Availability, Variable Access

3.4.2 Note On Lexical Variable Access
evaluationdebugger

When the debugger command loop establishes variable bindings for available
variables, these variable bindings have lexical scope and dynamic extent.The variable bindings are actually created using the symbol-macro-let special
form. You can close over them, but such closures canjt be used as upward
funargs.

You can also set local variables using setq, but if the variable was closed over in
the original source and never set, then setting the variable in the debugger may not
change the value in all the functions the variable is defined in. Another risk of setting
variables is that you may assign a value of a type that the compiler proved the variable
could never take on. This may result in bad things happening.

Source Location Printing, Compiler Policy Control, Variable Access, The
Debugger

3.5 Source Location Printing

2

source location printingdebugger
One of CMU js unique capabilities is source level debugging of compiled code.

These commands display the source location for the current frame:
source context

This command displays the file that the current framejs function was defined
from (if it was defined from a file), and then the source form responsible for
generating the code that the current frame was executing. If context is
specified, then it is an integer specifying the number of enclosing levels of list
structure to print.

vsource context
This command is identical to source, except that it uses the global values of *
print-level* and *print-length* instead of the debugger printing control
variables *debug-print-level* and *debug-print-length*.

The source form for a location in the code is the innermost list present in the
original source that encloses the form responsible for generating that code. If the
actual source form is not a list, then some enclosing list will be printed. For example,
if the source form was a reference to the variable *some-random-special*, then the
innermost enclosing evaluated form will be printed. Here are some possible enclosing
forms:

[Sorry. Ignored \beginexample ... \endexample]
If the code at a location was generated from the expansion of a macro or a source-

level compiler optimization, then the form in the original source that expanded into
that code will be printed. Suppose the file /usr/me/mystuff.lisp looked like this:

[Sorry. Ignored \beginexample ... \endexample]
If foo has called myfun, and is waiting for it to return, then the source command
would print:

[Sorry. Ignored \beginexample ... \endexample]
Note that the macro use was printed, not the actual function call form, (myfun).

If enclosing source is printed by giving an argument to source or vsource, then the
actual source form is marked by wrapping it in a list whose first element is #:***
HERE***. In the previous example, source 1 would print:

[Sorry. Ignored \beginexample ... \endexample]

[Sorry. Ignored \beginmenu ... \endmenu]
How the Source is Found, Source Location Availability, Source Location Printing,

Source Location Printing

3.5.1 How the Source is Found
If the code was defined from by compile or eval, then the source can always be
reliably located. If the code was defined from a fasl file created by compile-file, then
the debugger gets the source forms it prints by reading them from the original source
file. This is a potential problem, since the source file might have moved or changed
since the time it was compiled.

The source file is opened using the truename of the source file pathname originally
given to the compiler. This is an absolute pathname with all logical names and
symbolic links expanded. If the file canjt be located using this name, then the
debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was
compiled, the debugger prints this warning:

[Sorry. Ignored \beginexample ... \endexample]
where filename is the name of the source file. It then proceeds using a robust but not
foolproof heuristic for locating the source. This heuristic works if:

2

� No top-level forms before the top-level form containing the source have been
added or deleted, and

� The top-level form containing the source has not been modified much. (More
precisely, none of the list forms beginning before the source form have been
added or deleted.)

If the heuristic doesnjt work, the displayed source will be wrong, but will probably
be near the actual source. If the "shape" of the top-level form in the source file is too
different from the original form, then an error will be signalled. When the heuristic is
used, the the source location commands are noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a
read-macro you used in the code was redefined to expand into something different, or
if a read-macro ever returns the same eq list twice. If you donjt define read macros and
donjt use ## in perverted ways, you donjt need to worry about this.

Source Location Availability, , How the Source is Found, Source Location
Printing

3.5.2 Source Location Availability
debug optimization quality Source location information is only available when the
debug optimization quality is at least 2. If source location information is unavailable,
the source commands will give an error message.

If source location information is available, but the source location is unknown
because of an interrupt or unexpected hardware error (unknown-locations), then the
command will print:

[Sorry. Ignored \beginexample ... \endexample]
and then proceed to print the source location for the start of the ibasic block enclosing
the code location. blockbasic blockstart location Itjs a bit complicated to explain
exactly what a basic block is, but here are some properties of the block start location:

� The block start location may be the same as the true location.
� The block start location will never be later in the the programjs flow of

control than the true location.
� No conditional control structures (such as if, cond, or) will intervene between

the block start and the true location (but note that some conditionals present in
the original source could be optimized away.) Function calls ido not end basic
blocks.

� The head of a loop will be the start of a block.
� The programming language concept of "block structure" and the block

special form are totally unrelated to the compilerjs basic block.
In other words, the true location lies between the printed location and the next

conditional (but watch out because the compiler may have changed the program on
you.)

Compiler Policy Control, Exiting Commands, Source Location Printing, The
Debugger

3.6 Compiler Policy Control
policydebugger debug optimization quality optimize declaration

The compilation policy specified by optimize declarations affects the behavior
seen in the debugger. The debug quality directly affects the debugger by controlling
the amount of debugger information dumped. Other optimization qualities have
indirect but observable effects due to changes in the way compilation is done.

Unlike the other optimization qualities (which are compared in relative value to
evaluate tradeoffs), the debug optimization quality is directly translated to a level of
debug information. This absolute interpretation allows the user to count on a particular

2

amount of debug information being available even when the values of the other
qualities are changed during compilation. These are the levels of debug information
that correspond to the values of the debug quality:

0 Only the function name and enough information to allow the stack to be parsed.
> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will

only be accessible if the argument variable is never set and speed is not 3.
allows any real value for optimization qualities. It may be useful to specify 0.5
to get backtrace argument display without argument documentation.

1 Level 1 provides argument documentation (printed arglists) and derived
argument/result type information. This makes describe more informative, and
allows the compiler to do compile-time argument count and type checking for
any calls compiled at run-time.

2 Level 1 plus all interned local variables, source location information, and
lifetime information that tells the debugger when arguments are available
(even when speed is 3 or the argument is set.) This is the default.

3 Level 2 plus all uninterned variables. In addition, lifetime analysis is disabled
(even when speed is 3), ensuring that all variable values are available at any
known location within the scope of the binding. This has a speed penalty in
addition to the obvious space penalty.

As you can see, if the speed quality is 3, debugger performance is degraded. This
effect comes from the elimination of argument variable special-casing (debug-var-
validity.) Some degree of speed/debuggability tradeoff is unavoidable, but the effect is
not too drastic when debug is at least 2.

inline expansion semi-inline expansion In addition to inline and notinline
declarations, the relative values of the speed and space qualities also change whether
functions are inline expanded (inline-expansion.) If a function is inline expanded, then
there will be no frame to represent the call, and the arguments will be treated like any
other local variable. Functions may also be "semi-inline", in which case there is a
frame to represent the call, but the call is to an optimized local version of the function,
not to the original function.

Exiting Commands, Information Commands, Compiler Policy Control, The
Debugger

3.7 Exiting Commands
These commands get you out of the debugger.

quit Throw to top level.
restart n

Invokes the nth restart case as displayed by the error command. If n is not
specified, the available restart cases are reported.

go Calls continue on the condition given to debug. If there is no restart case named
continue, then an error is signaled.

abort Calls abort on the condition given to debug. This is useful for popping
debug command loop levels or aborting to top level, as the case may be.

[Sorry. Ignored \beginignore ... \endignore]
Information Commands, Breakpoint Commands, Exiting Commands, The Debugger

3.8 Information Commands
Most of these commands print information about the current frame or function, but a
few show general information.

2

help, ? Displays a synopsis of debugger commands.
describe Calls describe on the current function, displays number of local

variables, and indicates whether the function is compiled or interpreted.
print Displays the current function call as it would be displayed by moving to this

frame.
vprint (or pp) verbosity

Displays the current function call using *print-level* and *print-length*
instead of *debug-print-level* and *debug-print-length*. verbosity is a small
integer (default 2) that controls other dimensions of verbosity.

error Prints the condition given to invoke-debugger and the active proceed cases.
backtrace n

Displays all the frames from the current to the bottom. Only shows n frames if
specified. The printing is controlled by *debug-print-level* and *debug-print-
length*.

[Sorry. Ignored \beginignore ... \endignore]
Breakpoint Commands, Function Tracing, Information Commands, The Debugger

3.9 Breakpoint Commands
supports setting of breakpoints inside compiled functions and stepping of compiled

code. Breakpoints can only be set at at known locations (unknown-locations), so these
commands are largely useless unless the debug optimize quality is at least 2
(debugger-policy). These commands manipulate breakpoints:

breakpoint location option value
Set a breakpoint in some function. location may be an integer code location
number (as displayed by list-locations) or a keyword. The keyword can be
used to indicate setting a breakpoint at the function start (:start, :s) or function
end (:end, :e). The breakpoint command has :condition, :break, :print and :
function options which work similarly to the trace options.

list-locations (or ll) function
List all the code locations in the current framejs function, or in function if it is
supplied. The display format is the code location number, a colon and then the
source form for that location:

[Sorry. Ignored \beginexample ... \endexample]
If consecutive locations have the same source, then a numeric range like 3-5:
will be printed. For example, a default function call has a known location both
immediately before and after the call, which would result in two code locations
with the same source. The listed function becomes the new default function for
breakpoint setting (via the breakpoint) command.

list-breakpoints (or lb)
List all currently active breakpoints with their breakpoint number.

delete-breakpoint (or db) number
Delete a breakpoint specified by its breakpoint number. If no number is
specified, delete all breakpoints.

step
Step to the next possible breakpoint location in the current function. This
always steps over function calls, instead of stepping into them

2

[Sorry. Ignored \beginmenu ... \endmenu]
Breakpoint Example, , Breakpoint Commands, Breakpoint Commands

3.9.1 Breakpoint Example
Consider this definition of the factorial function:

[Sorry. Ignored \beginlisp ... \endlisp]
This debugger session demonstrates the use of breakpoints:

[Sorry. Ignored \beginexample ... \endexample]
Function Tracing, Specials, Breakpoint Commands, The Debugger

3.10 Function Tracing
tracing functiontracing

The tracer causes selected functions to print their arguments and their results
whenever they are called. Options allow conditional printing of the trace information
and conditional breakpoints on function entry or exit.

traceoption global-value name option value trace is a debugging tool that prints
information when specified functions are called. In its simplest form:

[Sorry. Ignored \beginexample ... \endexample]
trace causes a printout on trace-output each time that one of the named functions is
entered or returns (the names are not evaluated.) Trace output is indented according to
the number of pending traced calls, and this trace depth is printed at the beginning of
each line of output. Printing verbosity of arguments and return values is controlled by
debug-print-level and debug-print-length.

If no names or options are are given, trace returns the list of all currently traced
functions, *traced-function-list*.

Trace options can cause the normal printout to be suppressed, or cause extra
information to be printed. Each option is a pair of an option keyword and a value
form. Options may be interspersed with function names. Options only affect tracing of
the function whose name they appear immediately after. Global options are specified
before the first name, and affect all functions traced by a given use of trace. If an
already traced function is traced again, any new options replace the old options. The
following options are defined:

:condition form, :condition-after form, :condition-all form
If :condition is specified, then trace does nothing unless form evaluates to true
at the time of the call. :condition-after is similar, but suppresses the initial
printout, and is tested when the function returns. :condition-all tries both
before and after.

:wherein names
If specified, names is a function name or list of names. trace does nothing
unless a call to one of those functions encloses the call to this function (i.e. it
would appear in a backtrace.) Anonymous functions have string names like
"DEFUN FOO".

:break form, :break-after form, :break-all form
If specified, and form evaluates to true, then the debugger is invoked at the
start of the function, at the end of the function, or both, according to the
respective option.

:print form, :print-after form, :print-all form
In addition to the usual printout, the result of evaluating form is printed at the
start of the function, at the end of the function, or both, according to the
respective option. Multiple print options cause multiple values to be printed.

2

:function function-form
This is a not really an option, but rather another way of specifying what
function to trace. The function-form is evaluated immediately, and the
resulting function is traced.

:encapsulate :default n t n nil
In , tracing can be done either by temporarily redefining the function name
(encapsulation), or using breakpoints. When breakpoints are used, the function
object itself is destructively modified to cause the tracing action. The
advantage of using breakpoints is that tracing works even when the function is
anonymously called via funcall.
When :encapsulate is true, tracing is done via encapsulation. :default is the
default, and means to use encapsulation for interpreted functions and
funcallable instances, breakpoints otherwise. When encapsulation is used,
forms are not evaluated in the functionjs lexical environment, but debug:arg
can still be used.

:condition, :break and :print forms are evaluated in the lexical environment of the
called function; debug:var and debug:arg can be used. The -after and -all forms are
evaluated in the null environment.

untrace &rest function-names This macro turns off tracing for the specified
functions, and removes their names from *traced-function-list*. If no function-names
are given, then all currently traced functions are untraced.

traced-function-list[extensions] A list of function names maintained and used by
trace, untrace, and untrace-all. This list should contain the names of all functions
currently being traced.

max-trace-indentation[extensions] The maximum number of spaces which should
be used to indent trace printout. This variable is initially set to 40.

[Sorry. Ignored \beginmenu ... \endmenu]
Encapsulation Functions, , Function Tracing, Function Tracing

3.10.1 Encapsulation Functions
encapsulation advising

The encapsulation functions provide a mechanism for intercepting the arguments
and results of a function. encapsulate changes the function definition of a symbol, and
saves it so that it can be restored later. The new definition normally calls the original
definition. The fdefinition function always returns the original definition, stripping off
any encapsulation.

The original definition of the symbol can be restored at any time by the
unencapsulate function. encapsulate and unencapsulate allow a symbol to be multiply
encapsulated in such a way that different encapsulations can be completely transparent
to each other.

Each encapsulation has a type which may be an arbitrary lisp object. If a symbol
has several encapsulations of different types, then any one of them can be removed
without affecting more recent ones. A symbol may have more than one encapsulation
of the same type, but only the most recent one can be undone.

encapsulate[extensions]isymbol type body Saves the current definition of symbol,
and replaces it with a function which returns the result of evaluating the form, body.
Type is an arbitrary lisp object which is the type of encapsulation.

When the new function is called, the following variables are bound for the
evaluation of body:

extensions:argument-list A list of the arguments to the function.
extensions:basic-definition The unencapsulated definition of the function.

The unencapsulated definition may be called with the original arguments by including
the form

2

[Sorry. Ignored \beginlisp ... \endlisp]
encapsulate always returns symbol.
unencapsulate[extensions]isymbol type Undoes symboljs most recent

encapsulation of type type. Type is compared with eq. Encapsulations of other types
are left in place.

encapsulated-p[extensions]isymbol type Returns t if symbol has an encapsulation
of type type. Returns otherwise. Type is compared with eq.

[Sorry. Ignored \beginignore ... \endignore]
Specials, , Function Tracing, The Debugger

3.11 Specials
These are the special variables that control the debugger action.

debug-print-level[extensions] debug-print-length[extensions]
print-level and *print-length* are bound to these values during the execution of

some debug commands. When evaluating arbitrary expressions in the debugger, the
normal values of *print-level* and *print-length* are in effect. These variables are
initially set to 3 and 5, respectively.

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/compiler.ms
The Compiler, Advanced Compiler Use and Efficiency Hints, The Debugger, Top

2

Chapter 4

The Compiler
-*- Dictionary: cmu-user -*-

[Sorry. Ignored \beginmenu ... \endmenu]
Compiler Introduction, Calling the Compiler, The Compiler, The Compiler

4.1 Compiler Introduction
This chapter contains information about the compiler that every user should be
familiar with. Chapter 5 goes into greater depth, describing ways to use more
advanced features.

The compiler (also known as) has many features that are seldom or never
supported by conventional compilers:

� Source level debugging of compiled code (see chapter 3.)
� Type error compiler warnings for type errors detectable at compile time.
� Compiler error messages that provide a good indication of where the error

appeared in the source.
� Full run-time checking of all potential type errors, with optimization of type

checks to minimize the cost.
� Scheme-like features such as proper tail recursion and extensive source-level

optimization.
� Advanced tuning and optimization features such as comprehensive efficiency

notes, flow analysis, and untagged number representations (see chapter 5.)
Calling the Compiler, Compilation Units, Compiler Introduction, The Compiler

4.2 Calling the Compiler
compiling Functions may be compiled using compile, compile-file, or compile-from-
stream.

compile name &optional definition This function compiles the function whose
name is name. If name is , the compiled function object is returned. If definition is
supplied, it should be a lambda expression that is to be compiled and then placed in
the function cell of name. As per the proposed X3J13 cleanup "compile-argument-
problems", definition may also be an interpreted function.

The return values are as per the proposed X3J13 cleanup "compiler-diagnostics".
The first value is the function name or function object. The second value is if no
compiler diagnostics were issued, and otherwise. The third value is if no compiler
diagnostics other than style warnings were issued. A non- value indicates that there
were "serious" compiler diagnostics issued, or that other conditions of type error or
warning (but not style-warning) were signalled during compilation.

compile-file input-pathname :output-file :error-file :trace-file :error-output :
verbose :print :progress :load :block-compile :entry-points The compile-file is
extended through the addition of several new keywords and an additional
interpretation of input-pathname:

input-pathname If this argument is a list of input files, rather than a single input
pathname, then all the source files are compiled into a single object file. In this

3

case, the name of the first file is used to determine the default output file
names. This is especially useful in combination with block-compile.

output-file This argument specifies the name of the output file. gives the default
name, suppresses the output file.

error-file A listing of all the error output is directed to this file. If there are no
errors, then no error file is produced (and any existing error file is deleted.)
gives "name.err" (the default), and suppresses the output file.

error-output If (the default), then error output is sent to *error-output*. If a
stream, then output is sent to that stream instead. If , then error output is
suppressed. Note that this error output is in addition to (but the same as) the
output placed in the error-file.

verbose If (the default), then the compiler prints to error output at the start and
end of compilation of each file. See compile-verbose.

print If (the default), then the compiler prints to error output when each function
is compiled. See compile-print.

progress If (default), then the compiler prints to error output progress
information about the phases of compilation of each function. This is a CMU
extension that is useful mainly in large block compilations. See compile-
progress.

trace-file If true, several of the intermediate representations (including annotated
assembly code) are dumped out to this file. gives "name.trace". Trace output is
off by default. trace-files.

load If true, load the resulting output file.
block-compile Controls the compile-time resolution of function calls. By default,

only self-recursive calls are resolved, unless an ext:block-start declaration
appears in the source file. compile-file-block.

entry-points If non-null, then this is a list of the names of all functions in the file
that should have global definitions installed (because they are referenced in
other files.) compile-file-block.

The return values are as per the proposed X3J13 cleanup "compiler-diagnostics".
The first value from compile-file is the truename of the output file, or if the file could
not be created. The interpretation of the second and third values is described above for
compile.

compile-verbose compile-print compile-progress These variables determine the
default values for the verbose, print and progress arguments to compile-file.

compile-from-stream[extensions]input-stream :error-stream :trace-stream :block-
compile :entry-points This function is similar to compile-file, but it takes all its
arguments as streams. It reads code from input-stream until end of file is reached,
compiling into the current environment. This function returns the same two values as
the last two values of compile. No output files are produced.

Compilation Units, Interpreting Error Messages, Calling the Compiler, The
Compiler

4.3 Compilation Units
compilationunits

supports the with-compilation-unit macro added to the language by the proposed
X3J13 "with-compilation-unit" compiler cleanup. This provides a mechanism for
eliminating spurious undefined warnings when there are forward references across
files, and also provides a standard way to access compiler extensions.

with-compilation-unit (key value) form

3

This macro evaluates the forms in an environment that causes warnings for
undefined variables, functions and types to be delayed until all the forms have been
evaluated. Each keyword value is an evaluated form. These keyword options are
recognized:

override If uses of with-compilation-unit are dynamically nested, the outermost
use will take precedence, suppressing printing of undefined warnings by inner
uses. However, when the override option is true this shadowing is inhibited; an
inner use will print summary warnings for the compilations within the inner
scope.

optimize This is a CMU extension that specifies of the "global" compilation
policy for the dynamic extent of the body. The argument should evaluate to an
optimize declare form, like:

[Sorry. Ignored \beginlisp ... \endlisp]
optimize-declaration

optimize-interface Similar to optimize, but specifies the compilation policy for
function interfaces (argument count and type checking) for the dynamic extent
of the body. optimize-interface-declaration.

context-declarations This is a CMU extension that pattern-matches on function
names, automatically splicing in any appropriate declarations at the head of the
function definition. context-declarations.

[Sorry. Ignored \beginmenu ... \endmenu]
Undefined Warnings, Context Declarations, Compilation Units, Compilation Units

4.3.1 Undefined Warnings
undefined warnings Warnings about undefined variables, functions and types are
delayed until the end of the current compilation unit. The compiler entry functions
(compile, etc.) implicitly use with-compilation-unit, so undefined warnings will be
printed at the end of the compilation unless there is an enclosing with-compilation-
unit. In order the gain the benefit of this mechanism, you should wrap a single with-
compilation-unit around the calls to compile-file, i.e.:

[Sorry. Ignored \beginlisp ... \endlisp]
Unlike for functions and types, undefined warnings for variables are not

suppressed when a definition (e.g. defvar) appears after the reference (but in the same
compilation unit.) This is because doing special declarations out of order just doesnjt
work although early references will be compiled as special, bindings will be done
lexically.

Undefined warnings are printed with full source context (error-messages), which
tremendously simplifies the problem of finding undefined references that resulted
from macroexpansion. After printing detailed information about the undefined uses of
each name, with-compilation-unit also prints summary listings of the names of all the
undefined functions, types and variables.

undefined-warning-limit This variable controls the number of undefined warnings
for each distinct name that are printed with full source context when the compilation
unit ends. If there are more undefined references than this, then they are condensed
into a single warning:

[Sorry. Ignored \beginexample ... \endexample]
When the value is 0, then the undefined warnings are not broken down by name at all:
only the summary listing of undefined names is printed.

Context Declarations, Context Declaration Example, Undefined Warnings,
Compilation Units

4.3.2 Context Declarations

3

context sensitive declarations declarationscontext-sensitive
has a context-sensitive declaration mechanism which is useful because it allows

flexible control of the compilation policy in large systems without requiring changes
to the source files. The primary use of this feature is to allow the exported interfaces
of a system to be compiled more safely than the system internals. The context used is
the name being defined and the kind of definition (function, macro, etc.)

The context-declarations option to with-compilation-unit has dynamic scope,
affecting all compilation done during the evaluation of the body. The argument to this
option should evaluate to a list of lists of the form:

[Sorry. Ignored \beginexample ... \endexample]
In the indicated context, the specified declare forms are inserted at the head of each
definition. The declare forms for all contexts that match are appended together, with
earlier declarations getting precedence over later ones. A simple example:

[Sorry. Ignored \beginexample ... \endexample]
This will cause all functions that are named by external symbols to be compiled with
safety 2.

The full syntax of context specs is:
internal, external True if the symbol is internal (external) in its home package.
uninterned True if the symbol has no home package.
(:package package-name) True if the symboljs home package is in any of the

named packages (false if uninterned.)
anonymous True if the function doesnjt have any interesting name (not defmacro,

defun, labels or flet).
macro, function macro is a global (defmacro) macro. function is anything else.
local, global local is a labels or flet. global is anything else.
(:or context-spec) True when any supplied context-spec is true.
(:and context-spec) True only when all supplied context-specs are true.
(:not context-spec) True when context-spec is false.
(:member name) True when the defined name is one of these names (equal test.)
(:match pattern) True when any of the patterns is a substring of the name. The

name is wrapped with 's,so"FOO" matches names beginning with "FOO", etc.
Context Declaration Example, , Context Declarations, Compilation Units

4.3.3 Context Declaration Example
Here is a more complex example of with-compilation-unit options:

[Sorry. Ignored \beginexample ... \endexample]
The optimize and extensions:optimize-interface declarations (optimize-declaration) set
up the global compilation policy. The bodies of functions are to be compiled
completely unsafe (safety 0), but argument count and weakened argument type
checking is to be done when a function is called (speed 2 safety 1).

The first declaration specifies that all functions that are external or whose names
contain both "compiled with completely safe interfaces (safety 2). The reason for this
particular match rule is that setf inverse functions in this system tend to have both
strings in their name somewhere. We want setf inverses to be safe because they are
implicitly called by users even though their name is not exported.

The second declaration makes external macros or functions whose names start
with "PARSE-" have safe bodies (as well as interfaces). This is desirable because a
syntax error in a macro may cause a type error inside the body. The match rule is used
because macros often have auxiliary functions whose names begin with this string.

3

This particular example is used to build part of the standard system. Note
however, that context declarations must be set up according to the needs and coding
conventions of a particular system; different parts of are compiled with different
context declarations, and your system will probably need its own declarations. In
particular, any use of the match option depends on naming conventions used in
coding.

Interpreting Error Messages, Types in Python, Compilation Units, The Compiler

4.4 Interpreting Error Messages
error messagescompiler compiler error messages

One of js unique features is the level of source location information it provides in
error messages. The error messages contain a lot of detail in a terse format, to they
may be confusing at first. Error messages will be illustrated using this example
program:

[Sorry. Ignored \beginlisp ... \endlisp]
The main problem with this program is that it is trying to add 3 to a symbol. Note also
that the functions roq and ploq arenjt defined anywhere.

[Sorry. Ignored \beginmenu ... \endmenu]
The Parts of the Error Message, The Original and Actual Source, Interpreting

Error Messages, Interpreting Error Messages

4.4.1 The Parts of the Error Message
The compiler will produce this warning:

[Sorry. Ignored \beginexample ... \endexample]
In this example we see each of the six possible parts of a compiler error message:

File: /usr/me/stuff.lisp This is the file that the compiler read the relevant code
from. The file name is displayed because it may not be immediately obvious
when there is an error during compilation of a large system, especially when
with-compilation-unit is used to delay undefined warnings.

In: DEFUN FOO This is the definition or top-level form responsible for the error.
It is obtained by taking the first two elements of the enclosing form whose first
element is a symbol beginning with "DEF". If there is no enclosing
defmumble, then the outermost form is used. If there are multiple defmumbles,
then they are all printed from the out in, separated by =>js. In this example, the
problem was in the defun for foo.

(ZOQ Y) This is the ioriginal source form responsible for the error. Original
source means that the form directly appeared in the original input to the
compiler, i.e. in the lambda passed to compile or the top-level form read from
the source file. In this example, the expansion of the zoq macro was
responsible for the error.

m> ROQ PLOQ + This is the iprocessing path that the compiler used to produce
the errorful code. The processing path is a representation of the evaluated
forms enclosing the actual source that the compiler encountered when
processing the original source. The path is the first element of each form, or
the form itself if the form is not a list. These forms result from the expansion
of macros or source-to-source transformation done by the compiler. In this
example, the enclosing evaluated forms are the calls to roq, ploq and +. These
calls resulted from the expansion of the zoq macro.

==> Y This is the iactual source responsible for the error. If the actual source
appears in the explanation, then we print the next enclosing evaluated form,
instead of printing the actual source twice. (This is the form that would

3

otherwise have been the last form of the processing path.) In this example, the
problem is with the evaluation of the reference to the variable y.

Warning: Result is a SYMBOL, not a NUMBER. This is the explanation the
problem. In this example, the problem is that y evaluates to a symbol, but is in
a context where a number is required (the argument to +).

Note that each part of the error message is distinctively marked:
� File: and In: mark the file and definition, respectively.
� The original source is an indented form with no prefix.
� Each line of the processing path is prefixed with m>.
� The actual source form is indented like the original source, but is marked by

a preceding ==> line. This is like the "macroexpands to" notation used in .
� The explanation is prefixed with the error severity (error-severity), either

Error:, Warning:, or Note:.
Each part of the error message is more specific than the preceding one. If

consecutive error messages are for nearby locations, then the front part of the error
messages would be the same. In this case, the compiler omits as much of the second
message as in common with the first. For example:

[Sorry. Ignored \beginexample ... \endexample]
In this example, the file, definition and original source are identical for the two
messages, so the compiler omits them in the second message. If consecutive messages
are entirely identical, then the compiler prints only the first message, followed by:

[Sorry. Ignored \beginexample ... \endexample]
where repeats is the number of times the message was given.

If the source was not from a file, then no file line is printed. If the actual source is
the same as the original source, then the processing path and actual source will be
omitted. If no forms intervene between the original source and the actual source, then
the processing path will also be omitted.

The Original and Actual Source, The Processing Path, The Parts of the Error
Message, Interpreting Error Messages

4.4.2 The Original and Actual Source
original source actual source

The ioriginal source displayed will almost always be a list. If the actual source for
an error message is a symbol, the original source will be the immediately enclosing
evaluated list form. So even if the offending symbol does appear in the original
source, the compiler will print the enclosing list and then print the symbol as the
actual source (as though the symbol were introduced by a macro.)

When the iactual source is displayed (and is not a symbol), it will always be code
that resulted from the expansion of a macro or a source-to-source compiler
optimization. This is code that did not appear in the original source program; it was
introduced by the compiler.

Keep in mind that when the compiler displays a source form in an error message,
it always displays the most specific (innermost) responsible form. For example,
compiling this function:

[Sorry. Ignored \beginlisp ... \endlisp]
Gives this error message:

[Sorry. Ignored \beginexample ... \endexample]
This error message is not saying "therejs a problem somewhere in this let" it is saying
that there is a problem with the let itself. In this example, the problem is that ajs initial
value is not a fixnum.

The Processing Path, Error Severity, The Original and Actual Source, Interpreting
Error Messages

3

4.4.3 The Processing Path
processing path macroexpansion source-to-source transformation

The processing path is mainly useful for debugging macros, so if you donjt write
macros, you can ignore the processing path. Consider this example:

[Sorry. Ignored \beginlisp ... \endlisp]
Compiling results in this error message:

[Sorry. Ignored \beginexample ... \endexample]
Note that do appears in the processing path. This is because dotimes expands into:

[Sorry. Ignored \beginlisp ... \endlisp]
The rest of the processing path results from the expansion of do:

[Sorry. Ignored \beginlisp ... \endlisp]
In this example, the compiler descended into the block, let, tagbody and return-from to
reach the progn printed as the actual source. This is a place where the "actual source
appears in explanation" rule was applied. The innermost actual source form was the
symbol *undefined* itself, but that also appeared in the explanation, so the compiler
backed out one level.

Error Severity, Errors During Macroexpansion, The Processing Path, Interpreting
Error Messages

4.4.4 Error Severity
severity of compiler errors compiler error severity

There are three levels of compiler error severity:
Error This severity is used when the compiler encounters a problem serious

enough to prevent normal processing of a form. Instead of compiling the form,
the compiler compiles a call to error. Errors are used mainly for signalling
syntax errors. If an error happens during macroexpansion, the compiler will
handle it. The compiler also handles and attempts to proceed from read errors.

Warning Warnings are used when the compiler can prove that something bad will
happen if a portion of the program is executed, but the compiler can proceed
by compiling code that signals an error at runtime if the problem has not been
fixed:

� Violation of type declarations, or
� Function calls that have the wrong number of arguments or

malformed keyword argument lists, or
� Referencing a variable declared ignore, or unrecognized declaration

specifiers.
In the language of the standard, these are situations where the compiler can

determine that a situation with undefined consequences or that would cause an
error to be signalled would result at runtime.

Note Notes are used when there is something that seems a bit odd, but that might
reasonably appear in correct programs.

Note that the compiler does not fully conform to the proposed X3J13 "compiler-
diagnostics" cleanup. Errors, warnings and notes mostly correspond to errors,
warnings and style-warnings, but many things that the cleanup considers to be style-
warnings are printed as warnings rather than notes. Also, warnings, style-warnings
and most errors arenjt really signalled using the condition system.

Errors During Macroexpansion, Read Errors, Error Severity, Interpreting Error
Messages

4.4.5 Errors During Macroexpansion

3

macroexpansionerrors during
The compiler handles errors that happen during macroexpansion, turning them into

compiler errors. If you want to debug the error (to debug a macro), you can set *
break-on-signals* to error. For example, this definition:

[Sorry. Ignored \beginlisp ... \endlisp]
gives this error:

[Sorry. Ignored \beginexample ... \endexample]
Read Errors, Error Message Parameterization, Errors During Macroexpansion,

Interpreting Error Messages

4.4.6 Read Errors
read errorscompiler

The compiler also handles errors while reading the source. For example:
[Sorry. Ignored \beginexample ... \endexample]

The "at 2" refers to the character position in the source file at which the error was
signalled, which is generally immediately after the erroneous text. The next line, "(,/
foo)", is the line in the source that contains the error file position. The "/" indicates the
error position within that line (in this example, immediately after the offending
comma.)

When in (or any other EMACS-like editor), you can go to a character position
with:

[Sorry. Ignored \beginexample ... \endexample]
Note that if the source is from a buffer, then the position is relative to the start of the
compiled region or defun, not the file or buffer start.

After printing a read error message, the compiler attempts to recover from the
error by backing up to the start of the enclosing top-level form and reading again with
read-suppress true. If the compiler can recover from the error, then it substitutes a
call to cerror for the unreadable form and proceeds to compile the rest of the file
normally.

If there is a read error when the file position is at the end of the file (i.e., an
unexpected EOF error), then the error message looks like this:

[Sorry. Ignored \beginexample ... \endexample]
In this case, "starting at 14" indicates the character position at which the compiler
started reading, i.e. the position before the start of the form that was missing the
closing delimiter. The line "(defun test ()" is first line after the starting position that
the compiler thinks might contain the unmatched open delimiter.

Error Message Parameterization, , Read Errors, Interpreting Error Messages

4.4.7 Error Message Parameterization
error messagesverbosity verbosityof error messages

There is some control over the verbosity of error messages. See also undefined-
warning-limit, *efficiency-note-limit* and efficiency-note-cost-threshold.

enclosing-source-cutoff This variable specifies the number of enclosing actual
source forms that are printed in full, rather than in the abbreviated processing path
format. Increasing the value from its default of 1 allows you to see more of the guts of
the macroexpanded source, which is useful when debugging macros.

error-print-length error-print-level These variables are the print level and print
length used in printing error messages. The default values are 5 and 3. If null, the
global values of *print-level* and *print-length* are used.

def-source-context[extensions] name lambda-list form This macro defines how to
extract an abbreviated source context from the named form when it appears in the
compiler input. lambda-list is a defmacro style lambda-list used to parse the
arguments. The body should return a list of subforms that can be printed on about one
line. There are predefined methods for defstruct, defmethod, etc. If no method is

3

defined, then the first two subforms are returned. Note that this facility implicitly
determines the string name associated with anonymous functions.

Types in Python, Getting Existing Programs to Run, Interpreting Error Messages,
The Compiler

4.5 Types in Python
typesin python

A big difference between and all other compilers is the approach to type checking
and amount of knowledge about types:

� treats type declarations much differently that other Lisp compilers do.
doesnjt blindly believe type declarations; it considers them assertions about the
program that should be checked.

� also has a tremendously greater knowledge of the type system than other
compilers. Support is incomplete only for the not, and and satisfies types.

See also sections 5.2 and 5.3.

[Sorry. Ignored \beginmenu ... \endmenu]
Compile Time Type Errors, Precise Type Checking, Types in Python, Types in

Python

4.5.1 Compile Time Type Errors
compile time type errors type checkingat compile time

If the compiler can prove at compile time that some portion of the program cannot
be executed without a type error, then it will give a warning at compile time. It is
possible that the offending code would never actually be executed at run-time due to
some higher level consistency constraint unknown to the compiler, so a type warning
doesnjt always indicate an incorrect program. For example, consider this code
fragment:

[Sorry. Ignored \beginlisp ... \endlisp]
Compilation produces this warning:

[Sorry. Ignored \beginexample ... \endexample]
In this case, the warning is telling you that if foo isnjt any of :this, :that or :the-other,
then x will be initialized to , which the fixnum declaration makes illegal. The warning
will go away if ecase is used instead of case, or if :the-other is changed to .

This sort of spurious type warning happens moderately often in the expansion of
complex macros and in inline functions. In such cases, there may be dead code that is
impossible to correctly execute. The compiler canjt always prove this code is dead
(could never be executed), so it compiles the erroneous code (which will always signal
an error if it is executed) and gives a warning.

required-argument[extensions] This function can be used as the default value for
keyword arguments that must always be supplied. Since it is known by the compiler to
never return, it will avoid any compile-time type warnings that would result from a
default value inconsistent with the declared type. When this function is called, it
signals an error indicating that a required keyword argument was not supplied. This
function is also useful for defstruct slot defaults corresponding to required arguments.
empty-type.

Although this function is a CMU extension, it is relatively harmless to use it in
otherwise portable code, since you can easily define it yourself:

[Sorry. Ignored \beginlisp ... \endlisp]
Type warnings are inhibited when the extensions:inhibit-warnings optimization

quality is 3 (compiler-policy.) This can be used in a local declaration to inhibit type
warnings in a code fragment that has spurious warnings.

3

Precise Type Checking, Weakened Type Checking, Compile Time Type Errors,
Types in Python

4.5.2 Precise Type Checking
precise type checking type checkingprecise

With the default compilation policy, all type assertionsThere are a few circumstances where a type declaration is discarded rather than
being used as type assertion. This doesnjt affect safety much, since such
discarded declarations are also not believed to be true by the compiler. are
precisely checked. Precise checking means that the check is done as though typep
had been called with the exact type specifier that appeared in the declaration.
uses policy to determine whether to trust type assertions (compiler-policy). Type
assertions from declarations are indistinguishable from the type assertions on
arguments to built-in functions. In , adding type declarations makes code safer.

If a variable is declared to be (integer 3 17), then its value must always always be
an integer between 3 and 17. If multiple type declarations apply to a single variable,
then all the declarations must be correct; it is as though all the types were intersected
producing a single and type specifier.

Argument type declarations are automatically enforced. If you declare the type of
a function argument, a type check will be done when that function is called. In a
function call, the called function does the argument type checking, which means that a
more restrictive type assertion in the calling function (e.g., from the) may be lost.

The types of structure slots are also checked. The value of a structure slot must
always be of the type indicated in any :type slot option.The initial value need not be of this type as long as the corresponding argument to
the constructor is always supplied, but this will cause a compile-time type
warning unless required-argument is used. Because of precise type checking, the
arguments to slot accessors are checked to be the correct type of structure.

In traditional compilers, not all type assertions are checked, and type checks are
not precise. Traditional compilers blindly trust explicit type declarations, but may
check the argument type assertions for built-in functions. Type checking is not
precise, since the argument type checks will be for the most general type legal for that
argument. In many systems, type declarations suppress what little type checking is
being done, so adding type declarations makes code unsafe. This is a problem since it
discourages writing type declarations during initial coding. In addition to being more
error prone, adding type declarations during tuning also loses all the benefits of
debugging with checked type assertions.

To gain maximum benefit from js type checking, you should always declare the
types of function arguments and structure slots as precisely as possible. This often
involves the use of or, member and other list-style type specifiers. Paradoxically, even
though adding type declarations introduces type checks, it usually reduces the overall
amount of type checking. This is especially true for structure slot type declarations.

uses the safety optimization quality (rather than presence or absence of
declarations) to choose one of three levels of run-time type error checking: optimize-
declaration. advanced-type-stuff for more information about types in .

Weakened Type Checking, , Precise Type Checking, Types in Python

4.5.3 Weakened Type Checking
weakened type checking type checkingweakened

When the value for the speed optimization quality is greater than safety, and safety
is not 0, then type checking is weakened to reduce the speed and space penalty. In
structure-intensive code this can double the speed, yet still catch most type errors.
Weakened type checks provide a level of safety similar to that of "safe" code in other
compilers.

A type check is weakened by changing the check to be for some convenient
supertype of the asserted type. For example, (integer 3 17) is changed to fixnum,
(simple-vector 17) to simple-vector, and structure types are changed to structure. A
complex check like:

3

[Sorry. Ignored \beginexample ... \endexample]
will be omitted entirely (i.e., the check is weakened to *.) If a precise check can be
done for no extra cost, then no weakening is done.

Although weakened type checking is similar to type checking done by other
compilers, it is sometimes safer and sometimes less safe. Weakened checks are done
in the same places is precise checks, so all the preceding discussion about where
checking is done still applies. Weakened checking is sometimes somewhat unsafe
because although the check is weakened, the precise type is still input into type
inference. In some contexts this will result in type inferences not justified by the
weakened check, and hence deletion of some type checks that would be done by
conventional compilers.

For example, if this code was compiled with weakened checks:
[Sorry. Ignored \beginlisp ... \endlisp]

and myfun was passed a foo, then no type error would be signalled, and we would try
to multiply a simple-vector as though it were a float (with unpredictable results.) This
is because the check for bar was weakened to structure, yet when compiling the call to
bar-a, the compiler thinks it knows it has a bar.

Note that normally even weakened type checks report the precise type in error
messages. For example, if myfunjs bar check is weakened to structure, and the
argument is , then the error will be:

[Sorry. Ignored \beginexample ... \endexample]
However, there is some speed and space cost for signalling a precise error, so the
weakened type is reported if the speed optimization quality is 3 or debug quality is
less than 1:

[Sorry. Ignored \beginexample ... \endexample]
optimize-declaration for further discussion of the optimize declaration.

Getting Existing Programs to Run, Compiler Policy, Types in Python, The
Compiler

4.6 Getting Existing Programs to Run
existing programsto run typesportability compatibility with other Lisps

Since does much more comprehensive type checking than other Lisp compilers,
will detect type errors in many programs that have been debugged using other
compilers. These errors are mostly incorrect declarations, although compile-time type
errors can find actual bugs if parts of the program have never been tested.

Some incorrect declarations can only be detected by run-time type checking. It is
very important to initially compile programs with full type checks and then test this
version. After the checking version has been tested, then you can consider weakening
or eliminating type checks. T does much more type inference than other compilers,
so believing an incorrect declaration does much more damage.

The most common problem is with variables whose initial value doesnjt match the
type declaration. Incorrect initial values will always be flagged by a compile-time type
error, and they are simple to fix once located. Consider this code fragment:

[Sorry. Ignored \beginexample ... \endexample]
Here the variable foo is given an initial value of , but is declared to be a fixnum. Even
if it is never read, the initial value of a variable must match the declared type. There
are two ways to fix this problem. Change the declaration:

[Sorry. Ignored \beginexample ... \endexample]
or change the initial value:

[Sorry. Ignored \beginexample ... \endexample]
It is generally preferable to change to a legal initial value rather than to weaken the
declaration, but sometimes it is simpler to weaken the declaration than to try to make
an initial value of the appropriate type.

Another declaration problem occasionally encountered is incorrect declarations on

3

defmacro arguments. This probably usually happens when a function is converted into
a macro. Consider this macro:

[Sorry. Ignored \beginlisp ... \endlisp]
Although legal and well-defined , this meaning of this definition is almost certainly
not what the writer intended. For example, this call is illegal:

[Sorry. Ignored \beginlisp ... \endlisp]
The call is illegal because the argument to the macro is (+ 4 5), which is a list, not a
fixnum. Because of macro semantics, it is hardly ever useful to declare the types of
macro arguments. If you really want to assert something about the type of the result of
evaluating a macro argument, then put a the in the expansion:

[Sorry. Ignored \beginlisp ... \endlisp]
In this case, it would be stylistically preferable to change this macro back to a function
and declare it inline. Macros have no efficiency advantage over inline functions when
using . inline-expansion.

Some more subtle problems are caused by incorrect declarations that canjt be
detected at compile time. Consider this code:

[Sorry. Ignored \beginexample ... \endexample]
Although pos is almost always a fixnum, it is at the end of the loop. If this example is
compiled with full type checks (the default), then running it will signal a type error at
the end of the loop. If compiled without type checks, the program will go into an
infinite loop (or perhaps position will complain because (1+ nil) isnjt a sensible start.)
Why? Because if you compile without type checks, the compiler just quietly believes
the type declaration. Since pos is always a fixnum, it is never , so (null pos) is never
true, and the loop exit test is optimized away. Such errors are sometimes flagged by
unreachable code notes (dead-code-notes), but it is still important to initially compile
any system with full type checks, even if the system works fine when compiled using
other compilers.

In this case, the fix is to weaken the type declaration to (or fixnum null).Actually, this declaration is totally unnecessary in , since it already knows
position returns a non-negative fixnum or . Note that there is usually little
performance penalty for weakening a declaration in this way. Any numeric
operations in the body can still assume the variable is a fixnum, since is not a
legal numeric argument. Another possible fix would be to say:

[Sorry. Ignored \beginexample ... \endexample]
This would be preferable in some circumstances, since it would allow a non-standard
representation to be used for the local pos variable in the loop body (see section 5.10.
3.)

In summary, remember that all values that a variable ever has must be of the
declared type, and that you should test using safe code initially.

Compiler Policy, Open Coding and Inline Expansion, Getting Existing Programs
to Run, The Compiler

4.7 Compiler Policy
policycompiler compiler policy

The policy is what tells the compiler how to compile a program. This is logically
(and often textually) distinct from the program itself. Broad control of policy is
provided by the optimize declaration; other declarations and variables control more
specific aspects of compilation.

[Sorry. Ignored \beginmenu ... \endmenu]
The Optimize Declaration, The Optimize-Interface Declaration, Compiler Policy,

Compiler Policy

4.7.1 The Optimize Declaration

3

optimize declaration declarationsoptimize
The optimize declaration recognizes six different qualities. The qualities are

conceptually independent aspects of program performance. In reality, increasing one
quality tends to have adverse effects on other qualities. The compiler compares the
relative values of qualities when it needs to make a trade-off; i.e., if speed is greater
than safety, then improve speed at the cost of safety.

The default for all qualities (except debug) is 1. Whenever qualities are equal, ties
are broken according to a broad idea of what a good default environment is supposed
to be. Generally this downplays speed, compile-speed and space in favor of safety and
debug. Novice and casual users should stick to the default policy. Advanced users
often want to improve speed and memory usage at the cost of safety and
debuggability.

If the value for a quality is 0 or 3, then it may have a special interpretation. A
value of 0 means "totally unimportant", and a 3 means "ultimately important." These
extreme optimization values enable "heroic" compilation strategies that are not always
desirable and sometimes self-defeating. Specifying more than one quality as 3 is not
desirable, since it doesnjt tell the compiler which quality is most important.

These are the optimization qualities:
speed speed optimization qualityHow fast the program should is run. speed 3

enables some optimizations that hurt debuggability.
compilation-speed compilation-speed optimization qualityHow fast the compiler

should run. Note that increasing this above safety weakens type checking.
space space optimization qualityHow much space the compiled code should take

up. Inline expansion is mostly inhibited when space is greater than speed. A
value of 0 enables promiscuous inline expansion. Wide use of a 0 value is not
recommended, as it may waste so much space that run time is slowed. inline-
expansion for a discussion of inline expansion.

debug debug optimization qualityHow debuggable the program should be. The
quality is treated differently from the other qualities: each value indicates a
particular level of debugger information; it is not compared with the other
qualities. debugger-policy for more details.

safety safety optimization qualityHow much error checking should be done. If
speed, space or compilation-speed is more important than safety, then type
checking is weakened (weakened-type-checks). If safety if 0, then no run time
error checking is done. In addition to suppressing type checks, 0 also
suppresses argument count checking, unbound-symbol checking and array
bounds checks.

extensions:inhibit-warnings inhibit-warnings optimization qualityThis is a CMU
extension that determines how little (or how much) diagnostic output should be
printed during compilation. This quality is compared to other qualities to
determine whether to print style notes and warnings concerning those qualities.
If speed is greater than inhibit-warnings, then notes about how to improve
speed will be printed, etc. The default value is 1, so raising the value for any
standard quality above its default enables notes for that quality. If inhibit-
warnings is 3, then all notes and most non-serious warnings are inhibited. This
is useful with declare to suppress warnings about unavoidable problems.

The Optimize-Interface Declaration, , The Optimize Declaration, Compiler Policy

4.7.2 The Optimize-Interface Declaration
optimize-interface declaration declarationsoptimize-interface

The extensions:optimize-interface declaration is identical in syntax to the optimize
declaration, but it specifies the policy used during compilation of code the compiler
automatically generates to check the number and type of arguments supplied to a

3

function. It is useful to specify this policy separately, since even thoroughly debugged
functions are vulnerable to being passed the wrong arguments. The optimize-interface
declaration can specify that arguments should be checked even when the general
optimize policy is unsafe.

Note that this argument checking is the checking of user-supplied arguments to
any functions defined within the scope of the declaration, not the checking of
arguments to primitives that appear in those definitions.

The idea behind this declaration is that it allows the definition of functions that
appear fully safe to other callers, but that do no internal error checking. Of course, it is
possible that arguments may be invalid in ways other than having incorrect type.
Functions compiled unsafely must still protect themselves against things like user-
supplied array indices that are out of bounds and improper lists. See also the context-
declarations option to with-compilation-unit.

Open Coding and Inline Expansion, , Compiler Policy, The Compiler

4.8 Open Coding and Inline Expansion
open-coding inline expansion static functions

Since forbids the redefinition of standard functionsSee the proposed X3J13 "lisp-symbol-redefinition" cleanup., the compiler can
have special knowledge of these standard functions embedded in it. This special
knowledge is used in various ways (open coding, inline expansion, source
transformation), but the implications to the user are basically the same:

� Attempts to redefine standard functions may be frustrated, since the function
may never be called. Although it is technically illegal to redefine standard
functions, users sometimes want to implicitly redefine these functions when
they are debugging using the trace macro. Special-casing of standard functions
can be inhibited using the notinline declaration.

� The compiler can have multiple alternate implementations of standard
functions that implement different trade-offs of speed, space and safety. This
selection is based on the compiler policy, compiler-policy.

When a function call is iopen coded, inline code whose effect is equivalent to the
function call is substituted for that function call. When a function call is iclosed coded,
it is usually left as is, although it might be turned into a call to a different function
with different arguments. As an example, if nthcdr were to be open coded, then

[Sorry. Ignored \beginlisp ... \endlisp]
might turn into

[Sorry. Ignored \beginlisp ... \endlisp]
or even

[Sorry. Ignored \beginlisp ... \endlisp]
If nth is closed coded, then

[Sorry. Ignored \beginlisp ... \endlisp]
might stay the same, or turn into something like:

[Sorry. Ignored \beginlisp ... \endlisp]
In general, open coding sacrifices space for speed, but some functions (such as

car) are so simple that they are always open-coded. Even when not open-coded, a call
to a standard function may be transformed into a different function call (as in the last
example) or compiled as istatic call. Static function call uses a more efficient calling
convention that forbids redefinition.

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/efficiency.ms
-*- Dictionary: cmu-user -*- Advanced Compiler Use and Efficiency Hints,

UNIX Interface, The Compiler, Top

3

Chapter 5

Advanced Compiler Use and Efficiency
Hints

B

[Sorry. Ignored \beginmenu ... \endmenu]
Advanced Compiler Introduction, More About Types in Python, Advanced

Compiler Use and Efficiency Hints, Advanced Compiler Use and Efficiency Hints

5.1 Advanced Compiler Introduction
In , as is any language on any computer, the path to efficient code starts with good
algorithms and sensible programming techniques, but to avoid inefficiency pitfalls,
you need to know some of this implementationjs quirks and features. This chapter is
mostly a fairly long and detailed overview of what optimizations does. Although
there are the usual negative suggestions of inefficient features to avoid, the main
emphasis is on describing the things that programmers can count on being efficient.

The optimizations described here can have the effect of speeding up existing
programs written in conventional styles, but the potential for new programming styles
that are clearer and less error-prone is at least as significant. For this reason, several
sections end with a discussion of the implications of these optimizations for
programming style.

[Sorry. Ignored \beginmenu ... \endmenu]
Types, Optimization, Advanced Compiler Introduction, Advanced Compiler

Introduction

5.1.1 Types
Pythonjs support for types is unusual in three major ways:

� Precise type checking encourages the specific use of type declarations as a
form of run-time consistency checking. This speeds development by localizing
type errors and giving more meaningful error messages. precise-type-checks.
produces completely safe code; optimized type checking maintains reasonable
efficiency on conventional hardware (type-check-optimization.)

� Comprehensive support for the type system makes complex type specifiers
useful. Using type specifiers such as or and member has both efficiency and
robustness advantages. advanced-type-stuff.

� Type inference eliminates the need for some declarations, and also aids
compile-time detection of type errors. Given detailed type declarations, type
inference can often eliminate type checks and enable more efficient object
representations and code sequences. Checking all types results in fewer type
checks. See sections 5.3 and 5.10.2.

Optimization, Function Call, Types, Advanced Compiler Introduction

5.1.2 Optimization

4

The main barrier to efficient Lisp programs is not that there is no efficient way to code
the program in Lisp, but that it is difficult to arrive at that efficient coding. Common
Lisp is a highly complex language, and usually has many semantically equivalent
"reasonable" ways to code a given problem. It is desirable to make all of these
equivalent solutions have comparable efficiency so that programmers donjt have to
waste time discovering the most efficient solution.

Source level optimization increases the number of efficient ways to solve a
problem. This effect is much larger than the increase in the efficiency of the "best"
solution. Source level optimization transforms the original program into a more
efficient (but equivalent) program. Although the optimizer isnjt doing anything the
programmer couldnjt have done, this high-level optimization is important because:

� The programmer can code simply and directly, rather than obfuscating code
to please the compiler.

� When presented with a choice of similar coding alternatives, the programmer
can chose whichever happens to be most convenient, instead of worrying about
which is most efficient.

Source level optimization eliminates the need for macros to optimize their
expansion, and also increases the effectiveness of inline expansion. See sections 5.4
and 5.8.

Efficient support for a safer programming style is the biggest advantage of source
level optimization. Existing tuned programs typically wonjt benefit much from source
optimization, since their source has already been optimized by hand. However, even
tuned programs tend to run faster under because:

� Low level optimization and register allocation provides modest speedups in
any program.

� Block compilation and inline expansion can reduce function call overhead,
but may require some program restructuring. See sections 5.8, 5.6 and 5.7.

� Efficiency notes will point out important type declarations that are often
missed even in highly tuned programs. efficiency-notes.

� Existing programs can be compiled safely without prohibitive speed penalty,
although they would be faster and safer with added declarations. type-check-
optimization.

Function Call, Representation of Objects, Optimization, Advanced Compiler
Introduction

5.1.3 Function Call
The sort of symbolic programs generally written in often favor recursion over
iteration, or have inner loops so complex that they involve multiple function calls.
Such programs spend a larger fraction of their time doing function calls than is the
norm in other languages; for this reason implementations strive to make the general
(or full) function call as inexpensive as possible. goes beyond this by providing two
good alternatives to full call:

� Local call resolves function references at compile time, allowing better
calling sequences and optimization across function calls. local-call.

� Inline expansion totally eliminates call overhead and allows many context
dependent optimizations. This provides a safe and efficient implementation of
operations with function semantics, eliminating the need for error-prone macro
definitions or manual case analysis. Although most implementations support
inline expansion, it becomes a more powerful tool with js source level
optimization. See sections 5.4 and 5.8.

Generally, provides simple implementations for simple uses of function call,

4

rather than having only a single calling convention. These features allow a more
natural programming style:

� Proper tail recursion. tail-recursion
� Relatively efficient closures.
� A funcall that is as efficient as normal named call.
� Calls to local functions such as from labels are optimized:

� Control transfer is a direct jump.
� The closure environment is passed in registers rather than heap

allocated.
� Keyword arguments and multiple values are implemented more

efficiently.
local-call.
Representation of Objects, Writing Efficient Code, Function Call, Advanced

Compiler Introduction

5.1.4 Representation of Objects
Sometimes traditional implementation techniques compare so poorly to the
techniques used in other languages that can become an impractical language choice.
Terrible inefficiencies appear in number-crunching programs, since numeric
operations often involve number-consing and generic arithmetic. supports efficient
natural representations for numbers (and some other types), and allows these efficient
representations to be used in more contexts. also provides good efficiency notes that
warn when a crucial declaration is missing.

See section 5.10.2 for more about object representations and numeric types. Also
efficiency-notes about efficiency notes.

Writing Efficient Code, , Representation of Objects, Advanced Compiler
Introduction

5.1.5 Writing Efficient Code
Writing efficient code that works is a complex and prolonged process. It is important
not to get so involved in the pursuit of efficiency that you lose sight of what the
original problem demands. Remember that:

� The program should be correct it doesnjt matter how quickly you get the
wrong answer.

� Both the programmer and the user will make errors, so the program must be
robust it must detect errors in a way that allows easy correction.

� A small portion of the program will consume most of the resources, with the
bulk of the code being virtually irrelevant to efficiency considerations. Even
experienced programmers familiar with the problem area cannot reliably
predict where these "hot spots" will be.

The best way to get efficient code that is still worth using, is to separate coding
from tuning. During coding, you should:

� Use a coding style that aids correctness and robustness without being
incompatible with efficiency.

� Choose appropriate data structures that allow efficient algorithms and object
representations (object-representation). Try to make interfaces abstract enough
so that you can change to a different representation if profiling reveals a need.

� Whenever you make an assumption about a function argument or global data

4

structure, add consistency assertions, either with type declarations or explicit
uses of assert, ecase, etc.

During tuning, you should:
� Identify the hot spots in the program through profiling (section 5.13.)
� Identify inefficient constructs in the hot spot with efficiency notes, more

profiling, or manual inspection of the source. See sections 5.11 and 5.12.
� Add declarations and consider the application of optimizations. See sections

5.6, 5.8 and 5.10.2.
� If all else fails, consider algorithm or data structure changes. If you did a

good job coding, changes will be easy to introduce.
More About Types in Python, Type Inference, Advanced Compiler Introduction,

Advanced Compiler Use and Efficiency Hints

5.2 More About Types in Python
typesin python

This section goes into more detail describing what types and declarations are
recognized by . The area where differs most radically from previous compilers is in
its support for types:

� Precise type checking helps to find bugs at run time.
� Compile-time type checking helps to find bugs at compile time.
� Type inference minimizes the need for generic operations, and also increases

the efficiency of run time type checking and the effectiveness of compile time
type checking.

� Support for detailed types provides a wealth of opportunity for operation-
specific type inference and optimization.

[Sorry. Ignored \beginmenu ... \endmenu]
More Types Meaningful, Canonicalization, More About Types in Python, More

About Types in Python

5.2.1 More Types Meaningful
has a very powerful type system, but conventional implementations typically only

recognize the small set of types special in that implementation. In these systems, there
is an unfortunate paradox: a declaration for a relatively general type like fixnum will
be recognized by the compiler, but a highly specific declaration such as (integer 3 17)
is totally ignored.

This is obviously a problem, since the user has to know how to specify the type of
an object in the way the compiler wants it. A very minimal (but rarely satisfied)
criterion for type system support is that it be no worse to make a specific declaration
than to make a general one. goes beyond this by exploiting a number of advantages
obtained from detailed type information.

Using more restrictive types in declarations allows the compiler to do better type
inference and more compile-time type checking. Also, when type declarations are
considered to be consistency assertions that should be verified (conditional on policy)
, then complex types are useful for making more detailed assertions.

Python "understands" the list-style or, member, function, array and number type
specifiers. Understanding means that:

� If the type contains more information than is used in a particular context,
then the extra information is simply ignored, rather than derailing type
inference.

4

� In many contexts, the extra information from these type specifier is used to
good effect. In particular, type checking in Python is precise, so these complex
types can be used in declarations to make interesting assertions about functions
and data structures (precise-type-checks.) More specific declarations also aid
type inference and reduce the cost for type checking.

For related information, numeric-types for numeric types, and section 5.9.3 for
array types.

Canonicalization, Member Types, More Types Meaningful, More About Types in
Python

5.2.2 Canonicalization
typesequivalence canonicalization of types equivalence of types

When given a type specifier, will often rewrite it into a different (but equivalent)
type. This is the mechanism that uses for detecting type equivalence. For example, in
js canonical representation, these types are equivalent:

[Sorry. Ignored \beginexample ... \endexample]
This has two implications for the user:

� The standard symbol type specifiers for atom, null, fixnum, etc., are in no
way magical. The null type is actually defined to be (member nil), list is (or
cons null), and fixnum is (signed-byte 30).

� When the compiler prints out a type, it may not look like the type specifier
that originally appeared in the program. This is generally not a problem, but it
must be taken into consideration when reading compiler error messages.

Member Types, Union Types, Canonicalization, More About Types in Python

5.2.3 Member Types
member types

The member type specifier can be used to represent "symbolic" values, analogous
to the enumerated types of Pascal. For example, the second value of find-symbol has
this type:

[Sorry. Ignored \beginlisp ... \endlisp]
Member types are very useful for expressing consistency constraints on data
structures, for example:

[Sorry. Ignored \beginlisp ... \endlisp]
Member types are also useful in type inference, as the number of members can
sometimes be pared down to one, in which case the value is a known constant.

Union Types, The Empty Type, Member Types, More About Types in Python

5.2.4 Union Types
union (or) types or (union) types

The or (union) type specifier is understood, and is meaningfully applied in many
contexts. The use of or allows assertions to be made about types in dynamically typed
programs. For example:

[Sorry. Ignored \beginlisp ... \endlisp]
The type assertion on the top slot ensures that an error will be signalled when there is
an attempt to store an illegal value (such as :rmoved.) Although somewhat weak, these
union type assertions provide a useful input into type inference, allowing the cost of
type checking to be reduced. For example, this loop is safely compiled with no type
checks:

[Sorry. Ignored \beginlisp ... \endlisp]
Union types are also useful in type inference for representing types that are

partially constrained. For example, the result of this expression:

4

[Sorry. Ignored \beginlisp ... \endlisp]
can be expressed as (or integer cons).

The Empty Type, Function Types, Union Types, More About Types in Python

5.2.5 The Empty Type
NIL type empty typethe errorsresult type of

The type is also called the empty type, since no object is of type . The union of no
types, (or), is also empty. js interpretation of an expression whose type is is that the
expression never yields any value, but rather fails to terminate, or is thrown out of. For
example, the type of a call to error or a use of return is . When the type of an
expression is empty, compile-time type warnings about its value are suppressed;
presumably somebody else is signalling an error. If a function is declared to have
return type , but does in fact return, then (in safe compilation policies) a "NIL
Function returned" error will be signalled. See also the function required-argument.

Function Types, The Values Declaration, The Empty Type, More About Types in
Python

5.2.6 Function Types
functiontypes typesfunction

function types are understood in the restrictive sense, specifying:
� The argument syntax that the function must be called with. This is

information about what argument counts are acceptable, and which keyword
arguments are recognized. In , warnings about argument syntax are a
consequence of function type checking.

� The types of the argument values that the caller must pass. If the compiler
can prove that some argument to a call is of a type disallowed by the called
functionjs type, then it will give a compile-time type warning. In addition to
being used for compile-time type checking, these type assertions are also used
as output type assertions in code generation. For example, if foo is declared to
have a fixnum argument, then the 1+ in (foo (1+ x)) is compiled with
knowledge that the result must be a fixnum.

� The types the values that will be bound to argument variables in the
functionjs definition. Declaring a functionjs type with ftype implicitly declares
the types of the arguments in the definition. checks for consistency between
the definition and the ftype declaration. Because of precise type checking, an
error will be signalled when a function is called with an argument of the wrong
type.

� The type of return value(s) that the caller can expect. This information is a
useful input to type inference. For example, if a function is declared to return a
fixnum, then when a call to that function appears in an expression, the
expression will be compiled with knowledge that the call will return a fixnum.

� The type of return value(s) that the definition must return. The result type in
an ftype declaration is treated like an implicit the wrapped around the body of
the definition. If the definition returns a value of the wrong type, an error will
be signalled. If the compiler can prove that the function returns the wrong type,
then it will give a compile-time warning.

This is consistent with the new interpretation of function types and the ftype
declaration in the proposed X3J13 "function-type-argument-type-semantics" cleanup.
Note also, that if you donjt explicitly declare the type of a function using a global
ftype declaration, then will compute a function type from the definition, providing a
degree of inter-routine type inference, function-type-inference.

The Values Declaration, Structure Types, Function Types, More About Types in
Python

4

5.2.7 The Values Declaration
values declaration

supports the values declaration as an extension to . The syntax is (values itype1
itype2 ... typen). This declaration is semantically equivalent to a the form wrapped
around the body of the special form in which the values declaration appears. The
advantage of values over the is purely syntactic it doesnjt introduce more indentation.
For example:

[Sorry. Ignored \beginexample ... \endexample]
is equivalent to:

[Sorry. Ignored \beginexample ... \endexample]
and

[Sorry. Ignored \beginexample ... \endexample]
is equivalent to:

[Sorry. Ignored \beginexample ... \endexample]
In addition to being recognized by lambda (and hence by defun), the values
declaration is recognized by all the other special forms with bodies and declarations:
let, let*, labels and flet. Macros with declarations usually splice the declarations into
one of the above forms, so they will accept this declaration too, but the exact effect of
a values declaration will depend on the macro.

If you declare the types of all arguments to a function, and also declare the return
value types with values, you have described the type of the function. will use this
argument and result type information to derive a function type that will then be
applied to calls of the function (function-types.) This provides a way to declare the
types of functions that is much less syntactically awkward than using the ftype
declaration with a function type specifier.

Although the values declaration is non-standard, it is relatively harmless to use it
in otherwise portable code, since any warning in non-CMU implementations can be
suppressed with the standard declaration proclamation.

Structure Types, The Freeze-Type Declaration, The Values Declaration, More
About Types in Python

5.2.8 Structure Types
structure types defstruct types typesstructure

Because of precise type checking, structure types are much better supported by
Python than by conventional compilers:

� The structure argument to structure accessors is precisely checked if you call
foo-a on a bar, an error will be signalled.

� The types of slot values are precisely checked if you pass the wrong type
argument to a constructor or a slot setter, then an error will be signalled.

This error checking is tremendously useful for detecting bugs in programs that
manipulate complex data structures.

An additional advantage of checking structure types and enforcing slot types is
that the compiler can safely believe slot type declarations. effectively moves the type
checking from the slot access to the slot setter or constructor call. This is more
efficient since caller of the setter or constructor often knows the type of the value,
entirely eliminating the need to check the valuejs type. Consider this example:

[Sorry. Ignored \beginlisp ... \endlisp]
make-it and use-it are compiled with no checking on the types of the float slots, yet
use-it can use single-float arithmetic with perfect safety. Note that make-coordinate
must still check the values of x and y unless the call is block compiled or inline
expanded (local-call.) But even without this advantage, it is almost always more
efficient to check slot values on structure initialization, since slots are usually written
once and read many times.

4

The Freeze-Type Declaration, Type Restrictions, Structure Types, More About
Types in Python

5.2.9 The Freeze-Type Declaration
freeze-type declaration

The extensions:freeze-type declaration is a CMU extension that enables more
efficient compilation of user-defined types by asserting that the definition is not going
to change. This declaration may only be used globally (with declaim or proclaim).
Currently freeze-type only affects structure type testing done by typep, typecase, etc.
Here is an example:

[Sorry. Ignored \beginlisp ... \endlisp]
This asserts that the types foo and bar and their subtypes are not going to change. This
allows more efficient type testing, since the compiler can open-code a test for all
possible subtypes, rather than having to examine the type hierarchy at run-time.

Type Restrictions, Type Style Recommendations, The Freeze-Type Declaration,
More About Types in Python

5.2.10 Type Restrictions
typesrestrictions on

Avoid use of the and, not and satisfies types in declarations, since type inference
has problems with them. When these types do appear in a declaration, they are still
checked precisely, but the type information is of limited use to the compiler. and types
are effective as long as the intersection can be canonicalized to a type that doesnjt use
and. For example:

[Sorry. Ignored \beginexample ... \endexample]
is fine, since it is the same as:

[Sorry. Ignored \beginexample ... \endexample]
but this type:

[Sorry. Ignored \beginexample ... \endexample]
will not be fully understood by type interference since the and canjt be removed by
canonicalization.

Using any of these type specifiers in a type test with typep or typecase is fine,
since as tests, these types can be translated into the and macro, the not function or a
call to the satisfies predicate.

Type Style Recommendations, , Type Restrictions, More About Types in Python

5.2.11 Type Style Recommendations
style recommendations

Python provides good support for some currently unconventional ways of using
the type system. With , it is desirable to make declarations as precise as possible, but
type inference also makes some declarations unnecessary. Here are some general
guidelines for maximum robustness and efficiency:

� Declare the types of all function arguments and structure slots as precisely as
possible (while avoiding not, and and satisfies). Put these declarations in
during initial coding so that type assertions can find bugs for you during
debugging.

� Use the member type specifier where there are a small number of possible
symbol values, for example: (member :red :blue :green).

� Use the or type specifier in situations where the type is not certain, but there
are only a few possibilities, for example: (or list vector).

� Declare integer types with the tightest bounds that you can, such as (integer 3
7).

4

� Define deftype or defstruct types before they are used. Definition after use is
legal (producing no "undefined type" warnings), but type tests and structure
operations will be compiled much less efficiently.

� In addition to declaring the array element type and simpleness, also declare
the dimensions if they are fixed, for example:

[Sorry. Ignored \beginexample ... \endexample]
This bounds information allows array indexing for multi-dimensional arrays to
be compiled much more efficiently, and may also allow array bounds checking
to be done at compile time. array-types.

� Avoid use of the the declaration within expressions. Not only does it clutter
the code, but it is also almost worthless under safe policies. If the need for an
output type assertion is revealed by efficiency notes during tuning, then you
can consider the, but it is preferable to constrain the argument types more,
allowing the compiler to prove the desired result type.

� Donjt bother declaring the type of let or other non-argument variables unless
the type is non-obvious. If you declare function return types and structure slot
types, then the type of a variable is often obvious both to the programmer and
to the compiler. An important case where the type isnjt obvious, and a
declaration is appropriate, is when the value for a variable is pulled out of
untyped structure (e.g., the result of car), or comes from some weakly typed
function, such as read.

� Declarations are sometimes necessary for integer loop variables, since the
compiler canjt always prove that the value is of a good integer type. These
declarations are best added during tuning, when an efficiency note indicates
the need.

Type Inference, Source Optimization, More About Types in Python, Advanced
Compiler Use and Efficiency Hints

5.3 Type Inference
type inference inference of types derivation of types

Type inference is the process by which the compiler tries to figure out the types of
expressions and variables, given an inevitable lack of complete type information.
Although does much more type inference than most compilers, remember that the
more precise and comprehensive type declarations are, the more type inference will be
able to do.

[Sorry. Ignored \beginmenu ... \endmenu]
Variable Type Inference, Local Function Type Inference, Type Inference, Type

Inference

5.3.1 Variable Type Inference
The type of a variable is the union of the types of all the definitions. In the degenerate
case of a let, the type of the variable is the type of the initial value. This inferred type
is intersected with any declared type, and is then propagated to all the variablejs
references. The types of multiple-value-bind variables are similarly inferred from the
types of the individual values of the values form.

If multiple type declarations apply to a single variable, then all the declarations
must be correct; it is as though all the types were intersected producing a single and
type specifier. In this example:

[Sorry. Ignored \beginexample ... \endexample]
the two declarations for i are intersected, so i is known to be a non-negative fixnum.

In practice, this type inference is limited to lets and local functions, since the
compiler canjt analyze all the calls to a global function. But type inference works well

4

enough on local variables so that it is often unnecessary to declare the type of local
variables. This is especially likely when function result types and structure slot types
are declared. The main areas where type inference breaks down are:

� When the initial value of a variable is a untyped expression, such as (car x),
and

� When the type of one of the variablejs definitions is a function of the
variablejs current value, as in: (setq x (1+ x))

Local Function Type Inference, Global Function Type Inference, Variable Type
Inference, Type Inference

5.3.2 Local Function Type Inference
local calltype inference

The types of arguments to local functions are inferred in the same was as any other
local variable; the type is the union of the argument types across all the calls to the
function, intersected with the declared type. If there are any assignments to the
argument variables, the type of the assigned value is unioned in as well.

The result type of a local function is computed in a special way that takes tail
recursion (tail-recursion) into consideration. The result type is the union of all possible
return values that arenjt tail-recursive calls. For example, will infer that the result type
of this function is integer:

[Sorry. Ignored \beginlisp ... \endlisp]
Although this is a rather obvious result, it becomes somewhat less trivial in the
presence of mutual tail recursion of multiple functions. Local function result type
inference interacts with the mechanisms for ensuring proper tail recursion mentioned
in section 5.6.5.

Global Function Type Inference, Operation Specific Type Inference, Local
Function Type Inference, Type Inference

5.3.3 Global Function Type Inference
functiontype inference

As described in section 5.2.6, a global function type (ftype) declaration places
implicit type assertions on the call arguments, and also guarantees the type of the
return value. So wherever a call to a declared function appears, there is no doubt as to
the types of the arguments and return value. Furthermore, will infer a function type
from the functionjs definition if there is no ftype declaration. Any type declarations on
the argument variables are used as the argument types in the derived function type,
and the compilerjs best guess for the result type of the function is used as the result
type in the derived function type.

This method of deriving function types from the definition implicitly assumes that
functions wonjt be redefined at run-time. Consider this example:

[Sorry. Ignored \beginlisp ... \endlisp]
Presumably, the programmer really meant to return res from foo-p, but he seems to

have forgotten. When he tries to call do (frob (list jfoo nil)), frob will flame out when
it tries to add to a cons. Realizing his error, he fixes foo-p and recompiles it. But when
he retries his test case, he is baffled because the error is still there. What happened in
this example is that proved that the result of foo-p is null, and then proceeded to
optimize away the setf in frob.

Fortunately, in this example, the error is detected at compile time due to notes
about unreachable code (dead-code-notes.) Still, some users may not want to worry
about this sort of problem during incremental development, so there is a variable to
control deriving function types.

derive-function-types[extensions] If true (the default), argument and result type
information derived from compilation of defuns is used when compiling calls to that
function. If false, only information from ftype proclamations will be used.

4

Operation Specific Type Inference, Dynamic Type Inference, Global Function
Type Inference, Type Inference

5.3.4 Operation Specific Type Inference
operation specific type inference arithmetic type inference numerictype inference

Many of the standard functions have special type inference procedures that
determine the result type as a function of the argument types. For example, the result
type of aref is the array element type. Here are some other examples of type
inferences:

[Sorry. Ignored \beginlisp ... \endlisp]
Dynamic Type Inference, Type Check Optimization, Operation Specific Type

Inference, Type Inference

5.3.5 Dynamic Type Inference
dynamic type inference conditional type inference type inferencedynamic

Python uses flow analysis to infer types in dynamically typed programs. For
example:

[Sorry. Ignored \beginexample ... \endexample]
Here, the compiler knows the argument to length is a list, because the call to length is
only done when x is a list. The most significant efficiency effect of inference from
assertions is usually in type check optimization.

Dynamic type inference has two inputs: explicit conditionals and implicit or
explicit type assertions. Flow analysis propagates these constraints on variable type to
any code that can be executed only after passing though the constraint. Explicit type
constraints come from ifs where the test is either a lexical variable or a function of
lexical variables and constants, where the function is either a type predicate, a numeric
comparison or eq.

If there is an eq (or eql) test, then the compiler will actually substitute one
argument for the other in the true branch. For example:

[Sorry. Ignored \beginlisp ... \endlisp]
becomes:

[Sorry. Ignored \beginlisp ... \endlisp]
This substitution is done when one argument is a constant, or one argument has better
type information than the other. This transformation reveals opportunities for constant
folding or type-specific optimizations. If the test is against a constant, then the
compiler can prove that the variable is not that constant value in the false branch, or
(not (member :yow!)) in the example above. This can eliminate redundant tests, for
example:

[Sorry. Ignored \beginexample ... \endexample]
is transformed to this:

[Sorry. Ignored \beginexample ... \endexample]
Variables appearing as if tests are interpreted as (not (eq var nil)) tests. The compiler
also converts = into eql where possible. It is difficult to do inference directly on =
since it does implicit coercions.

When there is an explicit < or > test on integer variables, the compiler makes
inferences about the ranges the variables can assume in the true and false branches.
This is mainly useful when it proves that the values are small enough in magnitude to
allow open-coding of arithmetic operations. For example, in many uses of dotimes
with a fixnum repeat count, the compiler proves that fixnum arithmetic can be used.

Implicit type assertions are quite common, especially if you declare function
argument types. Dynamic inference from implicit type assertions sometimes helps to
disambiguate programs to a useful degree, but is most noticeable when it detects a
dynamic type error. For example:

[Sorry. Ignored \beginlisp ... \endlisp]

4

results in this warning:
[Sorry. Ignored \beginexample ... \endexample]

Note that js dynamic type checking semantics make dynamic type inference useful
even in programs that arenjt really dynamically typed, for example:

[Sorry. Ignored \beginlisp ... \endlisp]
Here, x presumably always holds a list, but in the absence of a declaration the
compiler cannot assume x is a list simply because list-specific operations are
sometimes done on it. The compiler must consider the program to be dynamically
typed until it proves otherwise. Dynamic type inference proves that the argument to
length is always a list because the call to length is only done after the list-specific car
operation.

Type Check Optimization, , Dynamic Type Inference, Type Inference

5.3.6 Type Check Optimization
type checkingoptimization optimizationtype check

Python backs up its support for precise type checking by minimizing the cost of
run-time type checking. This is done both through type inference and though
optimizations of type checking itself.

Type inference often allows the compiler to prove that a value is of the correct
type, and thus no type check is necessary. For example:

[Sorry. Ignored \beginlisp ... \endlisp]
Here, there is no need to check that the result of link-foo is a foo, since it always is.
Even when some type checks are necessary, type inference can often reduce the
number:

[Sorry. Ignored \beginexample ... \endexample]
In this example, only one (foo-p x) check is needed. This applies to a lesser degree in
list operations, such as:

[Sorry. Ignored \beginlisp ... \endlisp]
Here, we only have to check that x is a list once.

Since recognizes explicit type tests, code that explicitly protects itself against type
errors has little introduced overhead due to implicit type checking. For example, this
loop compiles with no implicit checks checks for car and cdr:

[Sorry. Ignored \beginlisp ... \endlisp]
complemented type checks Python reduces the cost of checks that must be done

through an optimization called complementing. A complemented check for type is
simply a check that the value is not of the type (not type). This is only interesting
when something is known about the actual type, in which case we can test for the
complement of (and known-type (not type)), or the difference between the known type
and the assertion. An example:

[Sorry. Ignored \beginlisp ... \endlisp]
Here, we change the type check for link-foo from a test for foo to a test for:

[Sorry. Ignored \beginlisp ... \endlisp]
or more simply (not null). This is probably the most important use of complementing,
since the situation is fairly common, and a null test is much cheaper than a structure
type test.

Here is a more complicated example that illustrates the combination of
complementing with dynamic type inference:

[Sorry. Ignored \beginlisp ... \endlisp]
This loop can be compiled with no type checks. The link test for link-foo and link-
next is complemented to (not null), and then deleted because of the explicit null test.
As before, no check is necessary for foo-a, since the link-foo is always a foo. This sort
of situation shows how precise type checking combined with precise declarations can
actually result in reduced type checking.

Source Optimization, Tail Recursion, Type Inference, Advanced Compiler Use
and Efficiency Hints

4

5.4 Source Optimization
optimization

This section describes source-level transformations that does on programs in an
attempt to make them more efficient. Although source-level optimizations can make
existing programs more efficient, the biggest advantage of this sort of optimization is
that it makes it easier to write efficient programs. If a clean, straightforward
implementation is can be transformed into an efficient one, then there is no need for
tricky and dangerous hand optimization.

[Sorry. Ignored \beginmenu ... \endmenu]
Let Optimization, Constant Folding, Source Optimization, Source Optimization

5.4.1 Let Optimization
let optimization optimizationlet The primary optimization of let variables is to delete
them when they are unnecessary. Whenever the value of a let variable is a constant, a
constant variable or a constant (local or non-notinline) function, the variable is
deleted, and references to the variable are replaced with references to the constant
expression. This is useful primarily in the expansion of macros or inline functions,
where argument values are often constant in any given call, but are in general non-
constant expressions that must be bound to preserve order of evaluation. Let variable
optimization eliminates the need for macros to carefully avoid spurious bindings, and
also makes inline functions just as efficient as macros.

A particularly interesting class of constant is a local function. Substituting for
lexical variables that are bound to a function can substantially improve the efficiency
of functional programming styles, for example:

[Sorry. Ignored \beginlisp ... \endlisp]
effectively transforms to:

[Sorry. Ignored \beginlisp ... \endlisp]
This transformation is done even when the function is a closure, as in:

[Sorry. Ignored \beginlisp ... \endlisp]
becoming:

[Sorry. Ignored \beginlisp ... \endlisp]
A constant variable is a lexical variable that is never assigned to, always keeping

its initial value. Whenever possible, avoid setting lexical variables instead bind a new
variable to the new value. Except for loop variables, it is almost always possible to
avoid setting lexical variables. This form:

[Sorry. Ignored \beginexample ... \endexample]
is more efficient than this form:

[Sorry. Ignored \beginexample ... \endexample]
Setting variables makes the program more difficult to understand, both to the compiler
and to the programmer. compiles assignments at least as efficiently as any other
compiler, but most let optimizations are only done on constant variables.

Constant variables with only a single use are also optimized away, even when the
initial value is not constant.The source transformation in this example doesnjt represent the preservation of
evaluation order implicit in the compilerjs internal representation. Where
necessary, the back end will reintroduce temporaries to preserve the semantics.
For example, this expansion of incf:

[Sorry. Ignored \beginlisp ... \endlisp]
becomes:

[Sorry. Ignored \beginlisp ... \endlisp]
The type semantics of this transformation are more important than the elimination of
the variable itself. Consider what happens when x is declared to be a fixnum; after the
transformation, the compiler can compile the addition knowing that the result is a
fixnum, whereas before the transformation the addition would have to allow for
fixnum overflow.

4

Another variable optimization deletes any variable that is never read. This causes
the initial value and any assigned values to be unused, allowing those expressions to
be deleted if they have no side-effects.

Note that a let is actually a degenerate case of local call (let-calls), and that let
optimization can be done on calls that werenjt created by a let. Also, local call allows
an applicative style of iteration that is totally assignment free.

Constant Folding, Unused Expression Elimination, Let Optimization, Source
Optimization

5.4.2 Constant Folding
constant folding foldingconstant

Constant folding is an optimization that replaces a call of constant arguments with
the constant result of that call. Constant folding is done on all standard functions for
which it is legal. Inline expansion allows folding of any constant parts of the
definition, and can be done even on functions that have side-effects.

It is convenient to rely on constant folding when programming, as in this example:
[Sorry. Ignored \beginexample ... \endexample]

Constant folding is also helpful when writing macros or inline functions, since it
usually eliminates the need to write a macro that special-cases constant arguments.

constant-function declaration Constant folding of a user defined function is
enabled by the extensions:constant-function proclamation. In this example:

[Sorry. Ignored \beginexample ... \endexample]
The call to myexp is constant-folded to 4.1711674.

Unused Expression Elimination, Control Optimization, Constant Folding, Source
Optimization

5.4.3 Unused Expression Elimination
unused expression elimination dead code elimination

If the value of any expression is not used, and the expression has no side-effects,
then it is deleted. As with constant folding, this optimization applies most often when
cleaning up after inline expansion and other optimizations. Any function declared an
extensions:constant-function is also subject to unused expression elimination.

Note that will eliminate parts of unused expressions known to be side-effect free,
even if there are other unknown parts. For example:

[Sorry. Ignored \beginlisp ... \endlisp]
becomes:

[Sorry. Ignored \beginlisp ... \endlisp]
Control Optimization, Unreachable Code Deletion, Unused Expression

Elimination, Source Optimization

5.4.4 Control Optimization
control optimization optimizationcontrol

The most important optimization of control is recognizing when an if test is known
at compile time, then deleting the if, the test expression, and the unreachable branch of
the if. This can be considered a special case of constant folding, although the test
doesnjt have to be truly constant as long as it is definitely not . Note also, that type
inference propagates the result of an if test to the true and false branches, constraint-
propagation.

A related if optimization is this transformation:Note that the code for x and y isnjt actually replicated.
[Sorry. Ignored \beginlisp ... \endlisp]

into:
[Sorry. Ignored \beginlisp ... \endlisp]

The opportunity for this sort of optimization usually results from a conditional macro.
For example:

4

[Sorry. Ignored \beginlisp ... \endlisp]
is actually implemented as this:

[Sorry. Ignored \beginlisp ... \endlisp]
which is transformed to this:

[Sorry. Ignored \beginlisp ... \endlisp]
which is then optimized to this:

[Sorry. Ignored \beginlisp ... \endlisp]
Note that due to js internal representations, the ifif situation will be recognized even if
other forms are wrapped around the inner if, like:

[Sorry. Ignored \beginexample ... \endexample]
In , all the macros really are macros, written in terms of if, block and tagbody, so

user-defined control macros can be just as efficient as the standard ones. emits basic
blocks using a heuristic that minimizes the number of unconditional branches. The
code in a tagbody will not be emitted in the order it appeared in the source, so there is
no point in arranging the code to make control drop through to the target.

Unreachable Code Deletion, Multiple Values Optimization, Control Optimization,
Source Optimization

5.4.5 Unreachable Code Deletion
unreachable code deletion dead code elimination

Python will delete code whenever it can prove that the code can never be executed.
Code becomes unreachable when:

� An if is optimized away, or
� There is an explicit unconditional control transfer such as go or return-from,

or
� The last reference to a local function is deleted (or there never was any

reference.)
When code that appeared in the original source is deleted, the compiler prints a

note to indicate a possible problem (or at least unnecessary code.) For example:
[Sorry. Ignored \beginlisp ... \endlisp]

will result in this note:
[Sorry. Ignored \beginexample ... \endexample]

It is important to pay attention to unreachable code notes, since they often indicate
a subtle type error. For example:

[Sorry. Ignored \beginexample ... \endexample]
results in this note:

[Sorry. Ignored \beginexample ... \endexample]
The none is unreachable, because type inference knows that the argument to foo-a
must be a foo, and thus canjt be . Presumably the programmer forgot that x could be
when he wrote the binding for a.

Here is an example with an incorrect declaration:
[Sorry. Ignored \beginlisp ... \endlisp]

This time our note is:
[Sorry. Ignored \beginexample ... \endexample]

The problem here is that pos can never be null since it is declared a fixnum.
It takes some experience with unreachable code notes to be able to tell what they

are trying to say. In non-obvious cases, the best thing to do is to call the function in a
way that should cause the unreachable code to be executed. Either you will get a type
error, or you will find that there truly is no way for the code to be executed.

Not all unreachable code results in a note:
� A note is only given when the unreachable code textually appears in the

original source. This prevents spurious notes due to the optimization of macros

4

and inline functions, but sometimes also foregoes a note that would have been
useful.

� Since accurate source information is not available for non-list forms, there is
an element of heuristic in determining whether or not to give a note about an
atom. Spurious notes may be given when a macro or inline function defines a
variable that is also present in the calling function. Notes about and are never
given, since it is too easy to confuse these constants in expanded code with
ones in the original source.

� Notes are only given about code unreachable due to control flow. There is no
note when an expression is deleted because its value is unused, since this is a
common consequence of other optimizations.

Somewhat spurious unreachable code notes can also result when a macro inserts
multiple copies of its arguments in different contexts, for example:

[Sorry. Ignored \beginlisp ... \endlisp]
results in these notes:

[Sorry. Ignored \beginexample ... \endexample]
It seems like it has deleted both branches of the if, but it has really deleted one branch
in one copy, and the other branch in the other copy. Note that these messages are only
spurious in not satisfying the intent of the rule that notes are only given when the
deleted code appears in the original source; there is always some code being deleted
when a unreachable code note is printed.

Multiple Values Optimization, Source to Source Transformation, Unreachable
Code Deletion, Source Optimization

5.4.6 Multiple Values Optimization
multiple value optimization optimizationmultiple value

Within a function, implements uses of multiple values particularly efficiently.
Multiple values can be kept in arbitrary registers, so using multiple values doesnjt
imply stack manipulation and representation conversion. For example, this code:

[Sorry. Ignored \beginexample ... \endexample]
is actually more efficient written this way:

[Sorry. Ignored \beginexample ... \endexample]
Also, local-call-return for information on how local call provides efficient support

for multiple function return values.
Source to Source Transformation, Style Recommendations, Multiple Values

Optimization, Source Optimization

5.4.7 Source to Source Transformation
source-to-source transformation transformationsource-to-source

The compiler implements a number of operation-specific optimizations as source-
to-source transformations. You will often see unfamiliar code in error messages, for
example:

[Sorry. Ignored \beginlisp ... \endlisp]
gives this warning:

[Sorry. Ignored \beginexample ... \endexample]
The original zerop has been transformed into a call to =. This transformation is
indicated with the same ==> used to mark macro and function inline expansion.
Although it can be confusing, display of the transformed source is important, since
warnings are given with respect to the transformed source. This a more obscure
example:

[Sorry. Ignored \beginlisp ... \endlisp]
gives this efficiency note:

[Sorry. Ignored \beginexample ... \endexample]

4

Here, the compiler commuted the call to logand, introducing temporaries. The note
complains that the first argument is not a fixnum, when in the original call, it was the
second argument. To make things more confusing, the compiler introduced
temporaries called c::x and c::y that are bound to y and 1, respectively.

You will also notice source-to-source optimizations when efficiency notes are
enabled (efficiency-notes.) When the compiler is unable to do a transformation that
might be possible if there was more information, then an efficiency note is printed.
For example, my-zerop above will also give this efficiency note:

[Sorry. Ignored \beginexample ... \endexample]
Style Recommendations, , Source to Source Transformation, Source Optimization

5.4.8 Style Recommendations
style recommendations

Source level optimization makes possible a clearer and more relaxed programming
style:

� Donjt use macros purely to avoid function call. If you want an inline
function, write it as a function and declare it inline. Itjs clearer, less error-
prone, and works just as well.

� Donjt write macros that try to "optimize" their expansion in trivial ways such
as avoiding binding variables for simple expressions. The compiler does these
optimizations too, and is less likely to make a mistake.

� Make use of local functions (i.e., labels or flet) and tail-recursion in places
where it is clearer. Local function call is faster than full call.

� Avoid setting local variables when possible. Binding a new let variable is at
least as efficient as setting an existing variable, and is easier to understand,
both for the compiler and the programmer.

� Instead of writing similar code over and over again so that it can be hand
customized for each use, define a macro or inline function, and let the compiler
do the work.

Tail Recursion, Local Call, Source Optimization, Advanced Compiler Use and
Efficiency Hints

5.5 Tail Recursion
tail recursion recursion

A call is tail-recursive if nothing has to be done after the the call returns, i.e. when
the call returns, the returned value is immediately returned from the calling function.
In this example, the recursive call to myfun is tail-recursive:

[Sorry. Ignored \beginlisp ... \endlisp]
Tail recursion is interesting because it is form of recursion that can be

implemented much more efficiently than general recursion. In general, a recursive call
requires the compiler to allocate storage on the stack at run-time for every call that has
not yet returned. This memory consumption makes recursion unacceptably inefficient
for representing repetitive algorithms having large or unbounded size. Tail recursion is
the special case of recursion that is semantically equivalent to the iteration constructs
normally used to represent repetition in programs. Because tail recursion is equivalent
to iteration, tail-recursive programs can be compiled as efficiently as iterative
programs.

So why would you want to write a program recursively when you can write it
using a loop? Well, the main answer is that recursion is a more general mechanism, so
it can express some solutions simply that are awkward to write as a loop. Some
programmers also feel that recursion is a stylistically preferable way to write loops
because it avoids assigning variables. For example, instead of writing:

4

[Sorry. Ignored \beginlisp ... \endlisp]
You can write:

[Sorry. Ignored \beginlisp ... \endlisp]
The tail-recursive definition is actually more efficient, in addition to being (arguably)
clearer. As the number of functions and the complexity of their call graph increases,
the simplicity of using recursion becomes compelling. Consider the advantages of
writing a large finite-state machine with separate tail-recursive functions instead of
using a single huge prog.

It helps to understand how to use tail recursion if you think of a tail-recursive call
as a psetq that assigns the argument values to the called functionjs variables, followed
by a go to the start of the called function. This makes clear an inherent efficiency
advantage of tail-recursive call: in addition to not having to allocate a stack frame,
there is no need to prepare for the call to return (e.g., by computing a return PC.)

Is there any disadvantage to tail recursion? Other than an increase in efficiency,
the only way you can tell that a call has been compiled tail-recursively is if you use
the debugger. Since a tail-recursive call has no stack frame, there is no way the
debugger can print out the stack frame representing the call. The effect is that
backtrace will not show some calls that would have been displayed in a non-tail-
recursive implementation. In practice, this is not as bad as it sounds in fact it isnjt
really clearly worse, just different. debug-tail-recursion for information about the
debugger implications of tail recursion.

In order to ensure that tail-recursion is preserved in arbitrarily complex calling
patterns across separately compiled functions, the compiler must compile any call in a
tail-recursive position as a tail-recursive call. This is done regardless of whether the
program actually exhibits any sort of recursive calling pattern. In this example, the call
to fun2 will always be compiled as a tail-recursive call:

[Sorry. Ignored \beginlisp ... \endlisp]
So tail recursion doesnjt necessarily have anything to do with recursion as it is
normally thought of. local-tail-recursion for more discussion of using tail recursion to
implement loops.

[Sorry. Ignored \beginmenu ... \endmenu]
Tail Recursion Exceptions, , Tail Recursion, Tail Recursion

5.5.1 Tail Recursion Exceptions
Although is claimed to be "properly" tail-recursive, some might dispute this, since
there are situations where tail recursion is inhibited:

� When the call is enclosed by a special binding, or
� When the call is enclosed by a catch or unwind-protect, or
� When the call is enclosed by a block or tagbody and the block name or go tag

has been closed over.
These dynamic extent binding forms inhibit tail recursion because they allocate stack
space to represent the binding. Shallow-binding implementations of dynamic scoping
also require cleanup code to be evaluated when the scope is exited.

Local Call, Block Compilation, Tail Recursion, Advanced Compiler Use and
Efficiency Hints

5.6 Local Call
local call calllocal function calllocal

Python supports two kinds of function call: full call and local call. Full call is the
standard calling convention; its late binding and generality make what it is, but create
unavoidable overheads. When the compiler can compile the calling function and the
called function simultaneously, it can use local call to avoid some of the overhead of
full call. Local call is really a collection of compilation strategies. If some aspect of

4

call overhead is not needed in a particular local call, then it can be omitted. In some
cases, local call can be totally free. Local call provides two main advantages to the
user:

� Local call makes the use of the lexical function binding forms flet and labels
much more efficient. A local call is always faster than a full call, and in many
cases is much faster.

� Local call is a natural approach to iblock compilation, a compilation
technique that resolves function references at compile time. Block compilation
speeds function call, but increases compilation times and prevents function
redefinition.

[Sorry. Ignored \beginmenu ... \endmenu]
Self-Recursive Calls, Let Calls, Local Call, Local Call

5.6.1 Self-Recursive Calls
recursionself

Local call is used when a function defined by defun calls itself. For example:
[Sorry. Ignored \beginlisp ... \endlisp]

This use of local call speeds recursion, but can also complicate debugging, since trace
will only show the first call to fact, and not the recursive calls. This is because the
recursive calls directly jump to the start of the function, and donjt indirect through the
symbol-function. Self-recursive local call is inhibited when the block-compile
argument to compile-file is (compile-file-block.)

Let Calls, Closures, Self-Recursive Calls, Local Call

5.6.2 Let Calls
Because local call avoids unnecessary call overheads, the compiler internally uses
local call to implement some macros and special forms that are not normally thought
of as involving a function call. For example, this let:

[Sorry. Ignored \beginexample ... \endexample]
is internally represented as though it was macroexpanded into:

[Sorry. Ignored \beginexample ... \endexample]
This implementation is acceptable because the simple cases of local call (equivalent to
a let) result in good code. This doesnjt make let any more efficient, but does make
local calls that are semantically the same as let much more efficient than full calls. For
example, these definitions are all the same as far as the compiler is concerned:

[Sorry. Ignored \beginexample ... \endexample]
Although local call is most efficient when the function is called only once, a call

doesnjt have to be equivalent to a let to be more efficient than full call. All local calls
avoid the overhead of argument count checking and keyword argument parsing, and
there are a number of other advantages that apply in many common situations. let-
optimization for a discussion of the optimizations done on let calls.

Closures, Local Tail Recursion, Let Calls, Local Call

5.6.3 Closures
closures

Local call allows for much more efficient use of closures, since the closure
environment doesnjt need to be allocated on the heap, or even stored in memory at all.
In this example, there is no penalty for localfun referencing a and b:

[Sorry. Ignored \beginlisp ... \endlisp]
In local call, the compiler effectively passes closed-over values as extra arguments, so
there is no need for you to "optimize" local function use by explicitly passing in

4

lexically visible values. Closures may also be subject to let optimization (let-
optimization.)

Note: indirect value cells are currently always allocated on the heap when a
variable is both assigned to (with setq or setf) and closed over, regardless of whether
the closure is a local function or not. This is another reason to avoid setting variables
when you donjt have to.

Local Tail Recursion, Return Values, Closures, Local Call

5.6.4 Local Tail Recursion
tail recursion recursiontail

Tail-recursive local calls are particularly efficient, since they are in effect an
assignment plus a control transfer. Scheme programmers write loops with tail-
recursive local calls, instead of using the imperative go and setq. This has not caught
on in the community, since conventional compilers donjt implement local call. In ,
users can choose to write loops such as:

[Sorry. Ignored \beginlisp ... \endlisp]
iterate[extensions] name ((var initial-value)) declaration form This macro provides

syntactic sugar for using labels to do iteration. It creates a local function name with
the specified vars as its arguments and the declarations and forms as its body. This
function is then called with the initial-values, and the result of the call is return from
the macro.

Here is our factorial example rewritten using iterate:
[Sorry. Ignored \beginlisp ... \endlisp]

The main advantage of using iterate over do is that iterate naturally allows stepping to
be done differently depending on conditionals in the body of the loop. iterate can also
be used to implement algorithms that arenjt really iterative by simply doing a non-tail
call. For example, the standard recursive definition of factorial can be written like this:

[Sorry. Ignored \beginlisp ... \endlisp]
Return Values, , Local Tail Recursion, Local Call

5.6.5 Return Values
return valueslocal call local callreturn values

One of the more subtle costs of full call comes from allowing arbitrary numbers of
return values. This overhead can be avoided in local calls to functions that always
return the same number of values. For efficiency reasons (as well as stylistic ones),
you should write functions so that they always return the same number of values. This
may require passing extra arguments to values in some cases, but the result is more
efficient, not less so.

When efficiency notes are enabled (efficiency-notes), and the compiler wants to
use known values return, but canjt prove that the function always returns the same
number of values, then it will print a note like this:

[Sorry. Ignored \beginexample ... \endexample]
In order to implement proper tail recursion in the presence of known values return

(tail-recursion), the compiler sometimes must prove that multiple functions all return
the same number of values. When this canjt be proven, the compiler will print a note
like this:

[Sorry. Ignored \beginexample ... \endexample]
number-local-call for the interaction between local call and the representation of
numeric types.

Block Compilation, Inline Expansion, Local Call, Advanced Compiler Use and
Efficiency Hints

5.7 Block Compilation

4

block compilation compilationblock
Block compilation allows calls to global functions defined by defun to be

compiled as local calls. The function call can be in a different top-level form than the
defun, or even in a different file.

In addition, block compilation allows the declaration of the ientry points to the
block compiled portion. An entry point is any function that may be called from outside
of the block compilation. If a function is not an entry point, then it can be compiled
more efficiently, since all calls are known at compile time. In particular, if a function
is only called in one place, then it will be let converted. This effectively inline expands
the function, but without the code duplication that results from defining the function
normally and then declaring it inline.

The main advantage of block compilation is that it it preserves efficiency in
programs even when (for readability and syntactic convenience) they are broken up
into many small functions. There is absolutely no overhead for calling a non-entry
point function that is defined purely for modularity (i.e. called only in one place.)

Block compilation also allows the use of non-descriptor arguments and return
values in non-trivial programs (number-local-call).

[Sorry. Ignored \beginmenu ... \endmenu]
Block Compilation Semantics, Block Compilation Declarations, Block

Compilation, Block Compilation

5.7.1 Block Compilation Semantics
The effect of block compilation can be envisioned as the compiler turning all the
defuns in the block compilation into a single labels form:

[Sorry. Ignored \beginexample ... \endexample]
becomes:

[Sorry. Ignored \beginexample ... \endexample]
Calls between the block compiled functions are local calls, so changing the global
definition of fun1 will have no effect on what fun2 does; fun2 will keep calling the old
fun1.

The entry points fun1 and fun3 are still installed in the symbol-function as the
global definitions of the functions, so a full call to an entry point works just as before.
However, fun2 is not an entry point, so it is not globally defined. In addition, fun2 is
only called in one place, so it will be let converted.

Block Compilation Declarations, Compiler Arguments, Block Compilation
Semantics, Block Compilation

5.7.2 Block Compilation Declarations
declarationsblock compilation start-block declaration end-block declaration

The extensions:start-block and extensions:end-block declarations allow fine-
grained control of block compilation. These declarations are only legal as a global
declarations (declaim or proclaim).
The start-block declaration has this syntax:

[Sorry. Ignored \beginexample ... \endexample]
When processed by the compiler, this declaration marks the start of block compilation,
and specifies the entry points to that block. If no entry points are specified, then all
functions are made into entry points. If already block compiling, then the compiler
ends the current block and starts a new one.
The end-block declaration has no arguments:

[Sorry. Ignored \beginlisp ... \endlisp]
The end-block declaration ends a block compilation unit without starting a new one.
This is useful mainly when only a portion of a file is worth block compiling.

Compiler Arguments, Practical Difficulties, Block Compilation Declarations,
Block Compilation

4

5.7.3 Compiler Arguments
compile-fileblock compilation arguments

The block-compile and entry-points arguments to extensions:compile-from-
stream and compile-file provide overall control of block compilation, and allow block
compilation without requiring modification of the program source.

There are three possible values of the block-compile argument:
Do no compile-time resolution of global function names, not even for self-

recursive calls. This inhibits any start-block declarations appearing in the file,
allowing all functions to be incrementally redefined.

Start compiling in block compilation mode. This is mainly useful for block
compiling small files that contain no start-block declarations. See also the
entry-points argument.

specified Start compiling in form-at-a-time mode, but exploit start-block
declarations and compile self-recursive calls as local calls. Normally specified
is the default for this argument (see block-compile-default.)

The entry-points argument can be used in conjunction with block-compile to
specify the entry-points to a block-compiled file. If not specified or , all global
functions will be compiled as entry points. When block-compile is not , this argument
is ignored.

block-compile-default This variable determines the default value for the block-
compile argument to compile-file and compile-from-stream. The initial value of this
variable is specified, but is sometimes useful for totally inhibiting block compilation.

Practical Difficulties, , Compiler Arguments, Block Compilation

5.7.4 Practical Difficulties
The main problem with block compilation is that the compiler uses large amounts of
memory when it is block compiling. This places an upper limit on the amount of code
that can be block compiled as a unit. To make best use of block compilation, it is
necessary to locate the parts of the program containing many internal calls, and then
add the appropriate start-block declarations. When writing new code, it is a good idea
to put in block compilation declarations from the very beginning, since writing block
declarations correctly requires accurate knowledge of the programjs function call
structure. If you want to initially develop code with full incremental redefinition, you
can compile with block-compile-default set to .

Note if a defun appears in a non-null lexical environment, then calls to it cannot be
block compiled.

Unless files are very small, it is probably impractical to block compile multiple
files as a unit by specifying a list of files to compile-file. Semi-inline expansion (semi-
inline) provides another way to extend block compilation across file boundaries.

Inline Expansion, Object Representation, Block Compilation, Advanced Compiler
Use and Efficiency Hints

5.8 Inline Expansion
inline expansion expansioninline callinline function callinline optimizationfunction
call

Python can expand almost any function inline, including functions with keyword
arguments. The only restrictions are that keyword argument keywords in the call must
be constant, and that global function definitions (defun) must be done in a null lexical
environment (not nested in a let or other binding form.) Local functions (flet) can be
inline expanded in any environment. Combined with js source-level optimization,
inline expansion can be used for things that formerly required macros for efficient
implementation. In , macros donjt have any efficiency advantage, so they need only be
used where a macrojs syntactic flexibility is required.

4

Inline expansion is a compiler optimization technique that reduces the overhead of
a function call by simply not doing the call: instead, the compiler effectively rewrites
the program to appear as though the definition of the called function was inserted at
each call site. In , this is straightforwardly expressed by inserting the lambda
corresponding to the original definition:

[Sorry. Ignored \beginlisp ... \endlisp]
When the function expanded inline is large, the program after inline expansion

may be substantially larger than the original program. If the program becomes too
large, inline expansion hurts speed rather than helping it, since hardware resources
such as physical memory and cache will be exhausted. Inline expansion is called for:

� When profiling has shown that a relatively simple function is called so often
that a large amount of time is being wasted in the calling of that function (as
opposed to running in that function.) If a function is complex, it will take a
long time to run relative the time spent in call, so the speed advantage of inline
expansion is diminished at the same time the space cost of inline expansion is
increased. Of course, if a function is rarely called, then the overhead of calling
it is also insignificant.

� With functions so simple that they take less space to inline expand than
would be taken to call the function (such as my-1+ above.) It would require
intimate knowledge of the compiler to be certain when inline expansion would
reduce space, but it is generally safe to inline expand functions whose
definition is a single function call, or a few calls to simple functions.

In addition to this speed/space tradeoff from inline expansionjs avoidance of the
call, inline expansion can also reveal opportunities for optimization. js extensive
source-level optimization can make use of context information from the caller to
tremendously simplify the code resulting from the inline expansion of a function.

The main form of caller context is local information about the actual argument
values: what the argument types are and whether the arguments are constant.
Knowledge about argument types can eliminate run-time type tests (e.g., for generic
arithmetic.) Constant arguments in a call provide opportunities for constant folding
optimization after inline expansion.

A hidden way that constant arguments are often supplied to functions is through
the defaulting of unsupplied optional or keyword arguments. There can be a huge
efficiency advantage to inline expanding functions that have complex keyword-based
interfaces, such as this definition of the member function:

[Sorry. Ignored \beginlisp ... \endlisp]
After inline expansion, this call is simplified to the obvious code:

[Sorry. Ignored \beginlisp ... \endlisp]
In this example, there could easily be more than an order of magnitude improvement
in speed. In addition to eliminating the original call to member, inline expansion also
allows the calls to char= and foo-a to be open-coded. We go from a loop with three
tests and two calls to a loop with one test and no calls.

source-optimization for more discussion of source level optimization.
[Sorry. Ignored \beginmenu ... \endmenu]

Inline Expansion Recording, Semi-Inline Expansion, Inline Expansion, Inline
Expansion

5.8.1 Inline Expansion Recording
recording of inline expansions

Inline expansion requires that the source for the inline expanded function to be
available when calls to the function are compiled. The compiler doesnjt remember the
inline expansion for every function, since that would take an excessive about of space.
Instead, the programmer must tell the compiler to record the inline expansion before
the definition of the inline expanded function is compiled. This is done by globally

4

declaring the function inline before the function is defined, by using the inline and
extensions:maybe-inline (maybe-inline-declaration) declarations.

In addition to recording the inline expansion of inline functions at the time the
function is compiled, compile-file also puts the inline expansion in the output file.
When the output file is loaded, the inline expansion is made available for subsequent
compilations; there is no need to compile the definition again to record the inline
expansion.

If a function is declared inline, but no expansion is recorded, then the compiler
will give an efficiency note like:

[Sorry. Ignored \beginexample ... \endexample]
When you get this note, check that the inline declaration and the definition appear
before the calls that are to be inline expanded. This note will also be given if the inline
expansion for a defun could not be recorded because the defun was in a non-null
lexical environment.

Semi-Inline Expansion, The Maybe-Inline Declaration, Inline Expansion
Recording, Inline Expansion

5.8.2 Semi-Inline Expansion
Python supports semi-inline functions. Semi-inline expansion shares a single copy of a
function across all the calls in a component by converting the inline expansion into a
local function (local-call.) This takes up less space when there are multiple calls, but
also provides less opportunity for context dependent optimization. When there is only
one call, the result is identical to normal inline expansion. Semi-inline expansion is
done when the space optimization quality is 0, and the function has been declared
extensions:maybe-inline.

This mechanism of inline expansion combined with local call also allows
recursive functions to be inline expanded. If a recursive function is declared inline,
calls will actually be compiled semi-inline. Although recursive functions are often so
complex that there is little advantage to semi-inline expansion, it can still be useful in
the same sort of cases where normal inline expansion is especially advantageous, i.e.
functions where the calling context can help a lot.

The Maybe-Inline Declaration, , Semi-Inline Expansion, Inline Expansion

5.8.3 The Maybe-Inline Declaration
maybe-inline declaration

The extensions:maybe-inline declaration is a extension. It is similar to inline, but
indicates that inline expansion may sometimes be desirable, rather than saying that
inline expansion should almost always be done. When used in a global declaration,
extensions:maybe-inline causes the expansion for the named functions to be recorded,
but the functions arenjt actually inline expanded unless space is 0 or the function is
eventually (perhaps locally) declared inline.

Use of the extensions:maybe-inline declaration followed by the defun is preferable
to the standard idiom of:

[Sorry. Ignored \beginlisp ... \endlisp]
The problem with using notinline in this way is that in it does more than just suppress
inline expansion, it also forbids the compiler to use any knowledge of myfun until a
later inline declaration overrides the notinline. This prevents compiler warnings about
incorrect calls to the function, and also prevents block compilation.

The extensions:maybe-inline declaration is used like this:
[Sorry. Ignored \beginlisp ... \endlisp]

In this example, the use of extensions:maybe-inline causes the expansion to be
recorded when the defun for somefun is compiled, and doesnjt waste space through
doing inline expansion by default. Unlike notinline, this declaration still allows the
compiler to assume that the known definition really is the one that will be called when

4

giving compiler warnings, and also allows the compiler to do semi-inline expansion
when the policy is appropriate.

When the goal is merely to control whether inline expansion is done by default, it
is preferable to use extensions:maybe-inline rather than notinline. The notinline
declaration should be reserved for those special occasions when a function may be
redefined at run-time, so the compiler must be told that the obvious definition of a
function is not necessarily the one that will be in effect at the time of the call.

Object Representation, Numbers, Inline Expansion, Advanced Compiler Use and
Efficiency Hints

5.9 Object Representation
object representation representationobject efficiencyof objects

A somewhat subtle aspect of writing efficient programs is choosing the correct
data structures so that the underlying objects can be implemented efficiently. This is
partly because of the need for multiple representations for a given value (non-
descriptor), but is also due to the sheer number of object types that has built in. The
number of possible representations complicates the choice of a good representation
because semantically similar objects may vary in their efficiency depending on how
the program operates on them.

[Sorry. Ignored \beginmenu ... \endmenu]
Think Before You Use a List, Structures, Object Representation, Object

Representation

5.9.1 Think Before You Use a List
listsefficiency of

Although Lispjs creator seemed to think that it was for LISt Processing, the astute
observer may have noticed that the chapter on list manipulation makes up less that
three percent of iCommon Lisp: the Language II. The language has grown since Lisp
1.5 new data types supersede lists for many purposes.

Structures, Arrays, Think Before You Use a List, Object Representation

5.9.2 Structures
structure typesefficiency of One of the best ways of building complex data structures
is to define appropriate structure types using defstruct. In , access of structure slots is
always at least as fast as list or vector access, and is usually faster. In comparison to a
list representation of a tuple, structures also have a space advantage.

Even if structures werenjt more efficient than other representations, structure use
would still be attractive because programs that use structures in appropriate ways are
much more maintainable and robust than programs written using only lists. For
example:

[Sorry. Ignored \beginlisp ... \endlisp]
could have been written using structures in this way:

[Sorry. Ignored \beginlisp ... \endlisp]
The second version is more maintainable because it is easier to understand what it is
doing. It is more robust because structures accesses are type checked. An astronaut
will never be confused with a beverage, and the result of beverage-flavor is always a
flavor. See sections 5.2.8 and 5.2.9 for more information about structure types. type-
inference for a number of examples that make clear the advantages of structure typing.

Note that the structure definition should be compiled before any uses of its
accessors or type predicate so that these function calls can be efficiently open-coded.

Arrays, Vectors, Structures, Object Representation

5.9.3 Arrays

4

arraysefficiency of
Arrays are often the most efficient representation for collections of objects

because:
� Array representations are often the most compact. An array is always more

compact than a list containing the same number of elements.
� Arrays allow fast constant-time access.
� Arrays are easily destructively modified, which can reduce consing.
� Array element types can be specialized, which reduces both overall size and

consing (specialized-array-types.)
Access of arrays that are not of type simple-array is less efficient, so declarations

are appropriate when an array is of a simple type like simple-string or simple-bit-
vector. Arrays are almost always simple, but the compiler may not be able to prove
simpleness at every use. The only way to get a non-simple array is to use the
displaced-to, fill-pointer or adjustable arguments to make-array. If you donjt use these
hairy options, then arrays can always be declared to be simple.

Because of the many specialized array types and the possibility of non-simple
arrays, array access is much like generic arithmetic (generic-arithmetic). In order for
array accesses to be efficiently compiled, the element type and simpleness of the array
must be known at compile time. If there is inadequate information, the compiler is
forced to call a generic array access routine. You can detect inefficient array accesses
by enabling efficiency notes, efficiency-notes.

Vectors, Bit-Vectors, Arrays, Object Representation

5.9.4 Vectors
vectorsefficiency of

Vectors (one dimensional arrays) are particularly useful, since in addition to their
obvious array-like applications, they are also well suited to representing sequences. In
comparison to a list representation, vectors are faster to access and take up between
two and sixty-four times less space (depending on the element type.) As with arbitrary
arrays, the compiler needs to know that vectors are not complex, so you should use
simple-string in preference to string, etc.

The only advantage that lists have over vectors for representing sequences is that it
is easy to change the length of a list, add to it and remove items from it. Likely signs
of archaic, slow lisp code are nth and nthcdr. If you are using these functions you
should probably be using a vector.

Bit-Vectors, Hashtables, Vectors, Object Representation

5.9.5 Bit-Vectors
bit-vectorsefficiency of

Another thing that lists have been used for is set manipulation. In applications
where there is a known, reasonably small universe of items bit-vectors can be used to
improve performance. This is much less convenient than using lists, because instead
of symbols, each element in the universe must be assigned a numeric index into the bit
vector. Using a bit-vector will nearly always be faster, and can be tremendously faster
if the number of elements in the set is not small. The logical operations on simple-bit-
vectors are efficient, since they operate on a word at a time.

Hashtables, , Bit-Vectors, Object Representation

5.9.6 Hashtables
hash-tablesefficiency of

Hashtables are an efficient and general mechanism for maintaining associations
such as the association between an object and its name. Although hashtables are

4

usually the best way to maintain associations, efficiency and style considerations
sometimes favor the use of an association list (a-list).

assoc is fairly fast when the test argument is eq or eql and there are only a few
elements, but the time goes up in proportion with the number of elements. In contrast,
the hash-table lookup has a somewhat higher overhead, but the speed is largely
unaffected by the number of entries in the table. For an equal hash-table or alist, hash-
tables have an even greater advantage, since the test is more expensive. Whatever you
do, be sure to use the most restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in
function, they do not do all things equally well.

� Alists are good for maintaining scoped environments. They were originally
invented to implement scoping in the Lisp interpreter, and are still used for this
in . With an alist one can non-destructively change an association simply by
consing a new element on the front. This is something that cannot be done with
hash-tables.

� Hashtables are good for maintaining a global association. The value
associated with an entry can easily be changed with setf. With an alist, one has
to go through contortions, either rplacdjing the cons if the entry exists, or
pushing a new one if it doesnjt. The side-effecting nature of hash-table
operations is an advantage here.

Historically, symbol property lists were often used for global name associations.
Property lists provide an awkward and error-prone combination of name association
and record structure. If you must use the property list, please store all the related
values in a single structure under a single property, rather than using many properties.
This makes access more efficient, and also adds a modicum of typing and abstraction.
advanced-type-stuff for information on types in .

Numbers, General Efficiency Hints, Object Representation, Advanced Compiler
Use and Efficiency Hints

5.10 Numbers
numerictypes typesnumeric

Numbers are interesting because numbers are one of the few data types that have
direct support in conventional hardware. If a number can be represented in the way
that the hardware expects it, then there is a big efficiency advantage.

Using hardware representations is problematical in due to dynamic typing (where
the type of a value may be unknown at compile time.) It is possible to compile code
for statically typed portions of a program with efficiency comparable to that obtained
in statically typed languages such as C, but not all implementations succeed. There
are two main barriers to efficient numerical code in :

� The compiler must prove that the numerical expression is in fact statically
typed, and

� The compiler must be able to somehow reconcile the conflicting demands of
the hardware mandated number representation with the requirements of
dynamic typing and garbage-collecting dynamic storage allocation.

Because of its type inference (type-inference) and efficiency notes (efficiency-
notes), is better than conventional compilers at ensuring that numerical expressions
are statically typed. Python also goes somewhat farther than existing compilers in the
area of allowing native machine number representations in the presence of garbage
collection.

[Sorry. Ignored \beginmenu ... \endmenu]
Descriptors, Non-Descriptor Representations, Numbers, Numbers

5.10.1 Descriptors

4

descriptorsobject object representation representationobject consingoverhead of
js dynamic typing requires that it be possible to represent any value with a fixed

length object, known as a descriptor. This fixed-length requirement is implicit in
features such as:

� Data types (like simple-vector) that can contain any type of object, and that
can be destructively modified to contain different objects (of possibly different
types.)

� Functions that can be called with any type of argument, and that can be
redefined at run time.

In order to save space, a descriptor is invariably represented as a single word.
Objects that can be directly represented in the descriptor itself are said to be
immediate. Descriptors for objects larger than one word are in reality pointers to the
memory actually containing the object.

Representing objects using pointers has two major disadvantages:
� The memory pointed to must be allocated on the heap, so it must eventually

be freed by the garbage collector. Excessive heap allocation of objects (or
"consing") is inefficient in several ways. consing.

� Representing an object in memory requires the compiler to emit additional
instructions to read the actual value in from memory, and then to write the
value back after operating on it.

The introduction of garbage collection makes things even worse, since the garbage
collector must be able to determine whether a descriptor is an immediate object or a
pointer. This requires that a few bits in each descriptor be dedicated to the garbage
collector. The loss of a few bits doesnjt seem like much, but it has a major efficiency
implication objects whose natural machine representation is a full word (integers and
single-floats) cannot have an immediate representation. So the compiler is forced to
use an unnatural immediate representation (such as fixnum) or a natural pointer
representation (with the attendant consing overhead.)

Non-Descriptor Representations, Variables, Descriptors, Numbers

5.10.2 Non-Descriptor Representations
non-descriptor representations stack numbers

From the discussion above, we can see that the standard descriptor representation
has many problems, the worst being number consing. compilers try to avoid these
descriptor efficiency problems by using non-descriptor representations. A compiler
that uses non-descriptor representations can compile this function so that it does no
number consing:

[Sorry. Ignored \beginlisp ... \endlisp]
If a descriptor representation were used, each iteration of the loop might cons two
floats and do three times as many memory references.

As its negative definition suggests, the range of possible non-descriptor
representations is large. The performance improvement from non-descriptor
representation depends upon both the number of types that have non-descriptor
representations and the number of contexts in which the compiler is forced to use a
descriptor representation.

Many compilers support non-descriptor representations for float types such as
single-float and double-float (section 5.10.7.) adds support for full word integers
(word-integers), characters (characters) and system-area pointers (unconstrained
pointers, system-area-pointers.) Many compilers support non-descriptor
representations for variables (section 5.10.3) and array elements (section 5.10.8.) adds
support for non-descriptor arguments and return values in local call (number-local-
call). Variables, Generic Arithmetic, Non-Descriptor Representations, Numbers

5.10.3 Variables

4

variablesnon-descriptor type declarationsvariable efficiencyof numeric variables
In order to use a non-descriptor representation for a variable or expression

intermediate value, the compiler must be able to prove that the value is always of a
particular type having a non-descriptor representation. Type inference (type-
inference) often needs some help from user-supplied declarations. The best kind of
type declaration is a variable type declaration placed at the binding point:

[Sorry. Ignored \beginlisp ... \endlisp]
Use of the, or of variable declarations not at the binding form is insufficient to allow
non-descriptor representation of the variable with these declarations it is not certain
that all values of the variable are of the right type. It is sometimes useful to introduce a
gratuitous binding that allows the compiler to change to a non-descriptor
representation, like:

[Sorry. Ignored \beginlisp ... \endlisp]
The declaration on the inner x is necessary here due to a phase ordering problem.
Although the compiler will eventually prove that the outer x is a (signed-byte 32)
within that etypecase branch, the inner x would have been optimized away by that
time. Declaring the type makes let optimization more cautious.

Note that storing a value into a global (or special) variable always forces a
descriptor representation. Wherever possible, you should operate only on local
variables, binding any referenced globals to local variables at the beginning of the
function, and doing any global assignments at the end.

Efficiency notes signal use of inefficient representations, so programmerjs neednjt
continuously worry about the details of representation selection (representation-eff-
note.)

Generic Arithmetic, Fixnums, Variables, Numbers

5.10.4 Generic Arithmetic
generic arithmetic arithmeticgeneric numericoperation efficiency

In , arithmetic operations are generic.As Steele notes in CLTL II, this is a generic conception of generic, and is not to
be confused with the CLOS concept of a generic function. The + function can be
passed fixnums, bignums, ratios, and various kinds of floats and complexes, in
any combination. In addition to the inherent complexity of bignum and ratio
operations, there is also a lot of overhead in just figuring out which operation to
do and what contagion and canonicalization rules apply. The complexity of
generic arithmetic is so great that it is inconceivable to open code it. Instead, the
compiler does a function call to a generic arithmetic routine, consuming many
instructions before the actual computation even starts.

This is ridiculous, since even programs do a lot of arithmetic, and the hardware is
capable of doing operations on small integers and floats with a single instruction. To
get acceptable efficiency, the compiler special-cases uses of generic arithmetic that are
directly implemented in the hardware. In order to open code arithmetic, several
constraints must be met:

� All the arguments must be known to be a good type of number.
� The result must be known to be a good type of number.
� Any intermediate values such as the result of (+ a b) in the call (+ a b c) must

be known to be a good type of number.
� All the above numbers with good types must be of the same good type. Donjt

try to mix integers and floats or different float formats.
The "good types" are (signed-byte 32), (unsigned-byte 32), single-float and

double-float. See sections 5.10.5, 5.10.6 and 5.10.7 for more discussion of good
numeric types.

float is not a good type, since it might mean either single-float or double-float.
integer is not a good type, since it might mean bignum. rational is not a good type,
since it might mean ratio. Note however that these types are still useful in

4

declarations, since type inference may be able to strengthen a weak declaration into a
good one, when it would be at a loss if there was no declaration at all (type-inference)
. The integer and unsigned-byte (or non-negative integer) types are especially useful in
this regard, since they can often be strengthened to a good integer type.

Arithmetic with complex numbers is inefficient in comparison to float and integer
arithmetic. Complex numbers are always represented with a pointer descriptor
(causing consing overhead), and complex arithmetic is always closed coded using the
general generic arithmetic functions. But arithmetic with complex types such as:

[Sorry. Ignored \beginlisp ... \endlisp]
is still faster than bignum or ratio arithmetic, since the implementation is much
simpler.

Note: donjt use / to divide integers unless you want the overhead of rational
arithmetic. Use truncate even when you know that the arguments divide evenly.

You donjt need to remember all the rules for how to get open-coded arithmetic,
since efficiency notes will tell you when and where there is a problem efficiency-
notes.

Fixnums, Word Integers, Generic Arithmetic, Numbers

5.10.5 Fixnums
fixnums bignums

A fixnum is a "FIXed precision NUMber". In modern implementations, fixnums
can be represented with an immediate descriptor, so operating on fixnums requires no
consing or memory references. Clever choice of representations also allows some
arithmetic operations to be done on fixnums using hardware supported word-integer
instructions, somewhat reducing the speed penalty for using an unnatural integer
representation.

It is useful to distinguish the fixnum type from the fixnum representation of
integers. In , there is absolutely nothing magical about the fixnum type in comparison
to other finite integer types. fixnum is equivalent to (is defined with deftype to be)
(signed-byte 30). fixnum is simply the largest subset of integers that ican be
represented using an immediate fixnum descriptor.

Unlike in other compilers, it is in no way desirable to use the fixnum type in
declarations in preference to more restrictive integer types such as bit, (integer -43 7)
and (unsigned-byte 8). Since Python does understand these integer types, it is
preferable to use the more restrictive type, as it allows better type inference
(operation-type-inference.)

The small, efficient fixnum is contrasted with bignum, or "BIG NUMber". This is
another descriptor representation for integers, but this time a pointer representation
that allows for arbitrarily large integers. Bignum operations are less efficient than
fixnum operations, both because of the consing and memory reference overheads of a
pointer descriptor, and also because of the inherent complexity of extended precision
arithmetic. While fixnum operations can often be done with a single instruction,
bignum operations are so complex that they are always done using generic arithmetic.

A crucial point is that the compiler will use generic arithmetic if it canjt prove that
all the arguments, intermediate values, and results are fixnums. With bounded integer
types such as fixnum, the result type proves to be especially problematical, since these
types are not closed under common arithmetic operations such as +, -, * and /. For
example, (1+ (the fixnum x)) does not necessarily evaluate to a fixnum. Bignums were
added to to get around this problem, but they really just transform the correctness
problem "if this add overflows, you will get the wrong answer" to the efficiency
problem "if this add might overflow then your program will run slowly (because of
generic arithmetic.)"

There is just no getting around the fact that the hardware only directly supports
short integers. To get the most efficient open coding, the compiler must be able to
prove that the result is a good integer type. This is an argument in favor of using more
restrictive integer types: (1+ (the fixnum x)) may not always be a fixnum, but (1+ (the

4

(unsigned-byte 8) x)) always is. Of course, you can also assert the result type by
putting in lots of the declarations and then compiling with safety 0.

Word Integers, Floating Point Efficiency, Fixnums, Numbers

5.10.6 Word Integers
word integers

Python is unique in its efficient implementation of arithmetic on full-word integers
through non-descriptor representations and open coding. Arithmetic on any subtype of
these types:

[Sorry. Ignored \beginlisp ... \endlisp]
is reasonably efficient, although subtypes of fixnum remain somewhat more efficient.

If a word integer must be represented as a descriptor, then the bignum
representation is used, with its associated consing overhead. The support for word
integers in no way changes the language semantics, it just makes arithmetic on small
bignums vastly more efficient. It is fine to do arithmetic operations with mixed fixnum
and word integer operands; just declare the most specific integer type you can, and let
the compiler decide what representation to use.

In fact, to most users, the greatest advantage of word integer arithmetic is that it
effectively provides a few guard bits on the fixnum representation. If there are missing
assertions on intermediate values in a fixnum expression, the intermediate results can
usually be proved to fit in a word. After the whole expression is evaluated, there will
often be a fixnum assertion on the final result, allowing creation of a fixnum result
without even checking for overflow.

The remarks in section 5.10.5 about fixnum result type also apply to word
integers; you must be careful to give the compiler enough information to prove that
the result is still a word integer. This time, though, when we blow out of word integers
we land in into generic bignum arithmetic, which is much worse than sleazing from
fixnums to word integers. Note that mixing (unsigned-byte 32) arguments with
arguments of any signed type (such as fixnum) is a no-no, since the result might not be
unsigned.

Floating Point Efficiency, Specialized Arrays, Word Integers, Numbers

5.10.7 Floating Point Efficiency
floating point efficiency

Arithmetic on objects of type single-float and double-float is efficiently
implemented using non-descriptor representations and open coding. As for integer
arithmetic, the arguments must be known to be of the same float type. Unlike for
integer arithmetic, the results and intermediate values usually take care of themselves
due to the rules of float contagion, i.e. (1+ (the single-float x)) is always a single-
float.

Although they are not specially implemented, short-float and long-float are also
acceptable in declarations, since they are synonyms for the single-float and double-
float types, respectively. It is harmless to use list-style float type specifiers such as
(single-float 0.0 1.0), but Python currently makes little use of bounds on float types.

When a float must be represented as a descriptor, a pointer representation is used,
creating consing overhead. For this reason, you should try to avoid situations (such as
full call and non-specialized data structures) that force a descriptor representation. See
sections 5.10.8 and 5.10.9.

ieee-float for information on the extensions to support IEEE floating point.
Specialized Arrays, Interactions With Local Call, Floating Point Efficiency,

Numbers

5.10.8 Specialized Arrays
specialized array types array typesspecialized typesspecialized array

4

supports specialized array element types through the element-type argument to
make-array. When an array has a specialized element type, only elements of that type
can be stored in the array. From this restriction comes two major efficiency
advantages:

� A specialized array can save space by packing multiple elements into a single
word. For example, a base-char array can have 4 elements per word, and a bit
array can have 32. This space-efficient representation is possible because it is
not necessary to separately indicate the type of each element.

� The elements in a specialized array can be given the same non-descriptor
representation as the one used in registers and on the stack, eliminating the
need for representation conversions when reading and writing array elements.
For objects with pointer descriptor representations (such as floats and word
integers) there is also a substantial consing reduction because it is not
necessary to allocate a new object every time an array element is modified.

These are the specialized element types currently supported:
[Sorry. Ignored \beginlisp ... \endlisp]

Although a simple-vector can hold any type of object, should still be considered a
specialized array type, since arrays with element type are specialized to hold
descriptors.

When using non-descriptor representations, it is particularly important to make
sure that array accesses are open-coded, since in addition to the generic operation
overhead, efficiency is lost when the array element is converted to a descriptor so that
it can be passed to (or from) the generic access routine. You can detect inefficient
array accesses by enabling efficiency notes, efficiency-notes. array-types.

Interactions With Local Call, Representation of Characters, Specialized Arrays,
Numbers

5.10.9 Interactions With Local Call
local callnumeric operands callnumeric operands numbers in local call

Local call has many advantages (local-call); one relevant to our discussion here is
that local call extends the usefulness of non-descriptor representations. If the compiler
knows from the argument type that an argument has a non-descriptor representation,
then the argument will be passed in that representation. The easiest way to ensure that
the argument type is known at compile time is to always declare the argument type in
the called function, like:

[Sorry. Ignored \beginlisp ... \endlisp]
The advantages of passing arguments and return values in a non-descriptor
representation are the same as for non-descriptor representations in general: reduced
consing and memory access (non-descriptor.) This extends the applicative
programming styles discussed in section 5.6 to numeric code. Also, if source files are
kept reasonably small, block compilation can be used to reduce number consing to a
minimum.

Note that non-descriptor return values can only be used with the known return
convention (section 5.6.5.) If the compiler canjt prove that a function always returns
the same number of values, then it must use the unknown values return convention,
which requires a descriptor representation. Pay attention to the known return
efficiency notes to avoid number consing.

Representation of Characters, , Interactions With Local Call, Numbers

5.10.10 Representation of Characters
characters strings

Python also uses a non-descriptor representation for characters when convenient.
This improves the efficiency of string manipulation, but is otherwise pretty invisible;
characters have an immediate descriptor representation, so there is not a great penalty

4

for converting a character to a descriptor. Nonetheless, it may sometimes be helpful to
declare character-valued variables as base-character.

General Efficiency Hints, Efficiency Notes, Numbers, Advanced Compiler Use
and Efficiency Hints

5.11 General Efficiency Hints
efficiencygeneral hints

This section is a summary of various implementation costs and ways to get around
them. These hints are relatively unrelated to the use of the compiler, and probably
also apply to most other implementations. In each section, there are references to
related in-depth discussion.

[Sorry. Ignored \beginmenu ... \endmenu]
Compile Your Code, Avoid Unnecessary Consing, General Efficiency Hints,

General Efficiency Hints

5.11.1 Compile Your Code
compilationwhy to

At this point, the advantages of compiling code relative to running it interpreted
probably need not be emphasized too much, but remember that in , compiled code
typically runs hundreds of times faster than interpreted code. Also, compiled (fasl)
files load significantly faster than source files, so it is worthwhile compiling files
which are loaded many times, even if the speed of the functions in the file is
unimportant.

Even disregarding the efficiency advantages, compiled code is as good or better
than interpreted code. Compiled code can be debugged at the source level (see chapter
3), and compiled code does more error checking. For these reasons, the interpreter
should be regarded mainly as an interactive command interpreter, rather than as a
programming language implementation.

D be concerned about the performance of your program until you see its speed
compiled. Some techniques that make compiled code run faster make interpreted code
run slower.

Avoid Unnecessary Consing, Complex Argument Syntax, Compile Your Code,
General Efficiency Hints

5.11.2 Avoid Unnecessary Consing
consing garbage collection memory allocation efficiencyof memory use

Consing is another name for allocation of storage, as done by the cons function
(hence its name.) cons is by no means the only function which conses so does make-
array and many other functions. Arithmetic and function call can also have hidden
consing overheads. Consing hurts performance in the following ways:

� Consing reduces memory access locality, increasing paging activity.
� Consing takes time just like anything else.
� Any space allocated eventually needs to be reclaimed, either by garbage

collection or by starting a new lisp process.
Consing is not undiluted evil, since programs do things other than consing, and

appropriate consing can speed up the real work. It would certainly save time to
allocate a vector of intermediate results that are reused hundreds of times. Also, if it is
necessary to copy a large data structure many times, it may be more efficient to update
the data structure non-destructively; this somewhat increases update overhead, but
makes copying trivial.

Note that the remarks in section 5.1.5 about the importance of separating tuning
from coding also apply to consing overhead. The majority of consing will be done by

4

a small portion of the program. The consing hot spots are even less predictable than
the CPU hot spots, so donjt waste time and create bugs by doing unnecessary consing
optimization. During initial coding, avoid unnecessary side-effects and cons where it
is convenient. If profiling reveals a consing problem, then go back and fix the hot
spots.

non-descriptor for a discussion of how to avoid number consing in .
Complex Argument Syntax, Mapping and Iteration, Avoid Unnecessary Consing,

General Efficiency Hints

5.11.3 Complex Argument Syntax
argument syntaxefficiency efficiencyof argument syntax keyword argument efficiency
rest argument efficiency

Common Lisp has very powerful argument passing mechanisms. Unfortunately,
two of the most powerful mechanisms, rest arguments and keyword arguments, have a
significant performance penalty:

� With keyword arguments, the called function has to parse the supplied
keywords by iterating over them and checking them against the desired
keywords.

� With rest arguments, the function must cons a list to hold the arguments. If a
function is called many times or with many arguments, large amounts of
memory will be allocated.

Although rest argument consing is worse than keyword parsing, neither problem is
serious unless thousands of calls are made to such a function. The use of keyword
arguments is strongly encouraged in functions with many arguments or with interfaces
that are likely to be extended, and rest arguments are often natural in user interface
functions.

Optional arguments have some efficiency advantage over keyword arguments, but
their syntactic clumsiness and lack of extensibility has caused many programmers to
abandon use of optionals except in functions that have obviously simple and
immutable interfaces (such as subseq), or in functions that are only called in a few
places. When defining an interface function to be used by other programmers or users,
use of only required and keyword arguments is recommended.

Parsing of defmacro keyword and rest arguments is done at compile time, so a
macro can be used to provide a convenient syntax with an efficient implementation. If
the macro-expanded form contains no keyword or rest arguments, then it is perfectly
acceptable in inner loops.

Keyword argument parsing overhead can also be avoided by use of inline
expansion (inline-expansion) and block compilation (section 5.7.)

Note: the compiler open-codes most heavily used system functions which have
keyword or rest arguments, so that no run-time overhead is involved.

Mapping and Iteration, Trace Files and Disassembly, Complex Argument Syntax,
General Efficiency Hints

5.11.4 Mapping and Iteration
mappingefficiency of

One of the traditional programming styles is a highly applicative one, involving
the use of mapping functions and many lists to store intermediate results. To compute
the sum of the square-roots of a list of numbers, one might say:

[Sorry. Ignored \beginlisp ... \endlisp]
This programming style is clear and elegant, but unfortunately results in slow

code. There are two reasons why:
� The creation of lists of intermediate results causes much consing (see 5.11.2)

.

4

� Each level of application requires another scan down the list. Thus,
disregarding other effects, the above code would probably take twice as long
as a straightforward iterative version.

An example of an iterative version of the same code:
[Sorry. Ignored \beginlisp ... \endlisp]

See sections 5.3.1 and 5.4.1 for a discussion of the interactions of iteration
constructs with type inference and variable optimization. Also, section 5.6.4 discusses
an applicative style of iteration.

Trace Files and Disassembly, , Mapping and Iteration, General Efficiency Hints

5.11.5 Trace Files and Disassembly
trace files assembly listing listing filestrace Virtual Machine (VM, or IR2)
representation implicit continuation representation (IR1) continuationsimplicit
representation

In order to write efficient code, you need to know the relative costs of different
operations. The main reason why writing efficient code is difficult is that there are so
many operations, and the costs of these operations vary in obscure context-dependent
ways. Although efficiency notes point out some problem areas, the only way to ensure
generation of the best code is to look at the assembly code output.

The disassemble function is a convenient way to get the assembly code for a
function, but it can be very difficult to interpret, since the correspondence with the
original source code is weak. A better (but more awkward) option is to use the trace-
file argument to compile-file to generate a trace file.

A trace file is a dump of the compilerjs internal representations, including
annotated assembly code. Each component in the program gets three pages in the trace
file (separated by "\s\up5(L)"):

� The implicit-continuation (or IR1) representation of the optimized source.
This is a dump of the flow graph representation used for "source level"
optimizations. As you will quickly notice, it is not really very close to the
source. This representation is not very useful to even sophisticated users.

� The Virtual Machine (VM, or IR2) representation of the program. This dump
represents the generated code as sequences of "Virtual OPerations" (VOPs.)
This representation is intermediate between the source and the assembly code
each VOP corresponds fairly directly to some primitive function or construct,
but a given VOP also has a fairly predictable instruction sequence. An
operation (such as +) may have multiple implementations with different cost
and applicability. The choice of a particular VOP such as +/fixnum or +/
single-float represents this choice of implementation. Once you are familiar
with it, the VM representation is probably the most useful for determining
what implementation has been used.

� An assembly listing, annotated with the VOP responsible for generating the
instructions. This listing is useful for figuring out what a VOP does and how it
is implemented in a particular context, but its large size makes it more difficult
to read.

Note that trace file generation takes much space and time, since the trace file is
tens of times larger than the source file. To avoid huge confusing trace files and much
wasted time, it is best to separate the critical program portion into its own file and then
generate the trace file from this small file.

Efficiency Notes, Profiling, General Efficiency Hints, Advanced Compiler Use
and Efficiency Hints

5.12 Efficiency Notes

4

efficiency notes notesefficiency tuning
Efficiency notes are messages that warn the user that the compiler has chosen a

relatively inefficient implementation for some operation. Usually an efficiency note
reflects the compilerjs desire for more type information. If the type of the values
concerned is known to the programmer, then additional declarations can be used to get
a more efficient implementation.

Efficiency notes are controlled by the extensions:inhibit-warnings optimization
quality (optimize-declaration.) When speed is greater than extensions:inhibit-
warnings, efficiency notes are enabled. Note that this implicitly enables efficiency
notes whenever speed is increased from its default of 1.

Consider this program with an obscure missing declaration:
[Sorry. Ignored \beginlisp ... \endlisp]

If compiled with (speed 3) (safety 0), this note is given:
[Sorry. Ignored \beginexample ... \endexample]

This efficiency note tells us that the result of the intermediate computation (+ x y) is
not known to be a fixnum, so the addition of the intermediate sum to z must be done
less efficiently. This can be fixed by changing the definition of eff-note:

[Sorry. Ignored \beginlisp ... \endlisp]
[Sorry. Ignored \beginmenu ... \endmenu]

Type Uncertainty, Efficiency Notes and Type Checking, Efficiency Notes,
Efficiency Notes

5.12.1 Type Uncertainty
typesuncertainty uncertainty of types

The main cause of inefficiency is the compilerjs lack of adequate information
about the types of function argument and result values. Many important operations
(such as arithmetic) have an inefficient general (generic) case, but have efficient
implementations that can usually be used if there is sufficient argument type
information.

Type efficiency notes are given when a valuejs type is uncertain. There is an
important distinction between values that are inot known to be of a good type
(uncertain) and values that are iknown not to be of a good type. Efficiency notes are
given mainly for the first case (uncertain types.) If it is clear to the compiler that that
there is not an efficient implementation for a particular function call, then an
efficiency note will only be given if the extensions:inhibit-warnings optimization
quality is 0 (optimize-declaration.)

In other words, the default efficiency notes only suggest that you add declarations,
not that you change the semantics of your program so that an efficient implementation
will apply. For example, compilation of this form will not give an efficiency note:

[Sorry. Ignored \beginlisp ... \endlisp]
even though a vector access is more efficient than indexing a list.

Efficiency Notes and Type Checking, Representation Efficiency Notes, Type
Uncertainty, Efficiency Notes

5.12.2 Efficiency Notes and Type Checking
type checkingefficiency of efficiencyof type checking optimizationtype check

It is important that the eff-note example above used (safety 0). When type
checking is enabled, you may get apparently spurious efficiency notes. With (safety 1)
, the note has this extra line on the end:

[Sorry. Ignored \beginexample ... \endexample]
This seems strange, since there is a the declaration on the result of that second
addition.

In fact, the inefficiency is real, and is a consequence of js treating declarations as
assertions to be verified. The compiler canjt assume that the result type declaration is
true it must generate the result and then test whether it is of the appropriate type.

4

In practice, this means that when you are tuning a program to run without type
checks, you should work from the efficiency notes generated by unsafe compilation. If
you want code to run efficiently with type checking, then you should pay attention to
all the efficiency notes that you get during safe compilation. Since user supplied
output type assertions (e.g., from the) are disregarded when selecting operation
implementations for safe code, you must somehow give the compiler information that
allows it to prove that the result truly must be of a good type. In our example, it could
be done by constraining the argument types more:

[Sorry. Ignored \beginlisp ... \endlisp]
Of course, this declaration is acceptable only if the arguments to eff-note always are
(unsigned-byte 18) integers.

Representation Efficiency Notes, Verbosity Control, Efficiency Notes and Type
Checking, Efficiency Notes

5.12.3 Representation Efficiency Notes
representation efficiency notes efficiency notesfor representation object representation
efficiency notes stack numbers non-descriptor representations descriptor
representationsforcing of

When operating on values that have non-descriptor representations (non-
descriptor), there can be a substantial time and consing penalty for converting to and
from descriptor representations. For this reason, the compiler gives an efficiency note
whenever it is forced to do a representation coercion more expensive than efficiency-
note-cost-threshold.

Inefficient representation coercions may be due to type uncertainty, as in this
example:

[Sorry. Ignored \beginlisp ... \endlisp]
which produces this efficiency note:

[Sorry. Ignored \beginexample ... \endexample]
The variable var is not known to always hold values of type single-float, so a
descriptor representation must be used for its value. In sort of situation, and adding a
declaration will eliminate the inefficiency.

Often inefficient representation conversions are not due to type uncertainty
instead, they result from evaluating a non-descriptor expression in a context that
requires a descriptor result:

� Assignment to or initialization of any data structure other than a specialized
array (specialized-array-types), or

� Assignment to a special variable, or
� Passing as an argument or returning as a value in any function call that is not

a local call (number-local-call.)
If such inefficient coercions appear in a "hot spot" in the program, data structures

redesign or program reorganization may be necessary to improve efficiency. See
sections 5.7, 5.10 and 5.13.

Because representation selection is done rather late in compilation, the source
context in these efficiency notes is somewhat vague, making interpretation more
difficult. This is a fairly straightforward example:

[Sorry. Ignored \beginlisp ... \endlisp]
which gives this efficiency note:

[Sorry. Ignored \beginexample ... \endexample]
The source context form is almost always the form that receives the value being
coerced (as it is in the preceding example), but can also be the source form which
generates the coerced value. Compiling this example:

[Sorry. Ignored \beginlisp ... \endlisp]
produces this note:

[Sorry. Ignored \beginexample ... \endexample]

4

In either case, the notejs text explanation attempts to include additional
information about what locations are the source and destination of the coercion. Here
are some example notes:

[Sorry. Ignored \beginexample ... \endexample]
Note that the return value of a function is also a place to which coercions may have to
be done:

[Sorry. Ignored \beginexample ... \endexample]
Sometimes the compiler is unable to determine a name for the source or destination, in
which case the source context is the only clue.

Verbosity Control, , Representation Efficiency Notes, Efficiency Notes

5.12.4 Verbosity Control
verbosityof efficiency notes efficiency notesverbosity

These variables control the verbosity of efficiency notes:
efficiency-note-cost-threshold Before printing some efficiency notes, the compiler

compares the value of this variable to the difference in cost between the chosen
implementation and the best potential implementation. If the difference is not greater
than this limit, then no note is printed. The units are implementation dependent; the
initial value suppresses notes about "trivial" inefficiencies. A value of 1 will note any
inefficiency.

efficiency-note-limit When printing some efficiency notes, the compiler reports
possible efficient implementations. The initial value of 2 prevents excessively long
efficiency notes in the common case where there is no type information, so all
implementations are possible.

Profiling, , Efficiency Notes, Advanced Compiler Use and Efficiency Hints

5.13 Profiling
profiling timing consing tuning

The first step in improving a programjs performance is to profile the activity of the
program to find where it spends its time. The best way to do this is to use the profiling
utility found in the profile package. This package provides a macro profile that
encapsulates functions with statistics gathering code.

[Sorry. Ignored \beginmenu ... \endmenu]
Profile Interface, Profiling Techniques, Profiling, Profiling

5.13.1 Profile Interface
timed-functions This variable holds a list of all functions that are currently being
profiled.

profile name This macro wraps profiling code around the named functions. As in
trace, the names are not evaluated. If a function is already profiled, then the function is
unprofiled and reprofiled (useful to notice function redefinition.) A warning is printed
for each name that is not a defined function.

unprofile name This macro removes profiling code from the named functions. If
no names are supplied, all currently profiled functions are unprofiled.

report-time name This macro prints a report for each named function of the
following information:

� The total CPU time used in that function for all calls,
� the total number of bytes consed in that function for all calls,
� the total number of calls,
� the average amount of CPU time per call.

4

Summary totals of the CPU time, consing and calls columns are printed. An estimate
of the profiling overhead is also printed (see below). If no names are supplied, then the
times for all currently profiled functions are printed.

reset-time name This macro resets the profiling counters associated with the
named functions. If no names are supplied, then all currently profiled functions are
reset.

Profiling Techniques, Nested or Recursive Calls, Profile Interface, Profiling

5.13.2 Profiling Techniques
Start by profiling big pieces of a program, then carefully choose which functions close
to, but not in, the inner loop are to be profiled next. Avoid profiling functions that are
called by other profiled functions, since this opens the possibility of profiling
overhead being included in the reported times.

If the per-call time reported is less than 1/10 second, then consider the clock
resolution and profiling overhead before you believe the time. It may be that you will
need to run your program many times in order to average out to a higher resolution.

Nested or Recursive Calls, Clock resolution, Profiling Techniques, Profiling

5.13.3 Nested or Recursive Calls
The profiler attempts to compensate for nested or recursive calls. Time and consing
overhead will be charged to the dynamically innermost (most recent) call to a profiled
function. So profiling a subfunction of a profiled function will cause the reported time
for the outer function to decrease. However if an inner function has a large number of
calls, some of the profiling overhead may "leak" into the reported time for the outer
function. In general, be wary of profiling short functions that are called many times.

Clock resolution, Profiling overhead, Nested or Recursive Calls, Profiling

5.13.4 Clock resolution
Unless you are very lucky, the length of your machinejs clock "tick" is probably much
longer than the time it takes simple function to run. For example, on the IBM RT, the
clock resolution is 1/50 second. This means that if a function is only called a few
times, then only the first couple decimal places are really meaningful.

Note however, that if a function is called many times, then the statistical averaging
across all calls should result in increased resolution. For example, on the IBM RT, if a
function is called a thousand times, then a resolution of tens of microseconds can be
expected.

Profiling overhead, Additional Timing Utilities, Clock resolution, Profiling

5.13.5 Profiling overhead
The added profiling code takes time to run every time that the profiled function is
called, which can disrupt the attempt to collect timing information. In order to avoid
serious inflation of the times for functions that take little time to run, an estimate of
the overhead due to profiling is subtracted from the times reported for each function.

Although this correction works fairly well, it is not totally accurate, resulting in
times that become increasingly meaningless for functions with short runtimes. This is
only a concern when the estimated profiling overhead is many times larger than
reported total CPU time.

The estimated profiling overhead is not represented in the reported total CPU time.
The sum of total CPU time and the estimated profiling overhead should be close to the
total CPU time for the entire profiling run (as determined by the time macro.) Time
unaccounted for is probably being used by functions that you forgot to profile.

Additional Timing Utilities, A Note on Timing, Profiling overhead, Profiling

5.13.6 Additional Timing Utilities

4

time form This macro evaluates form, prints some timing and memory allocation
information to *trace-output*, and returns any values that form returns. The timing
information includes real time, user run time, and system run time. This macro
executes a form and reports the time and consing overhead. If the time form is not
compiled (e.g. it was typed at top-level), then compile will be called on the form to
give more accurate timing information. If you really want to time interpreted speed,
you can say:

[Sorry. Ignored \beginlisp ... \endlisp]
Things that execute fairly quickly should be timed more than once, since there may be
more paging overhead in the first timing. To increase the accuracy of very short times,
you can time multiple evaluations:

[Sorry. Ignored \beginlisp ... \endlisp]
get-bytes-consed[extensions] This function returns the number of bytes allocated

since the first time you called it. The first time it is called it returns zero. The above
profiling routines use this to report consing information.

gc-run-time[extensions] This variable accumulates the run-time consumed by
garbage collection, in the units returned by get-internal-run-time.

internal-time-units-per-second The value of internal-time-units-per-second is 100.
A Note on Timing, Benchmarking Techniques, Additional Timing Utilities,

Profiling

5.13.7 A Note on Timing
CPU timeinterpretation of run timeinterpretation of interpretation of run time

There are two general kinds of timing information provided by the time macro and
other profiling utilities: real time and run time. Real time is elapsed, wall clock time. It
will be affected in a fairly obvious way by any other activity on the machine. The
more other processes contending for CPU and memory, the more real time will
increase. This means that real time measurements are difficult to replicate, though this
is less true on a dedicated workstation. The advantage of real time is that it is real. It
tells you really how long the program took to run under the benchmarking conditions.
The problem is that you donjt know exactly what those conditions were.

Run time is the amount of time that the processor supposedly spent running the
program, as opposed to waiting for I/O or running other processes. "User run time"
and "system run time" are numbers reported by the Unix kernel. They are supposed to
be a measure of how much time the processor spent running your "user" program
(which will include GC overhead, etc.), and the amount of time that the kernel spent
running "on your behalf".

Ideally, user time should be totally unaffected by benchmarking conditions; in
reality user time does depend on other system activity, though in rather non-obvious
ways.

System time will clearly depend on benchmarking conditions. In Lisp
benchmarking, paging activity increases system run time (but not by as much as it
increases real time, since the kernel spends some time waiting for the disk, and this is
not run time, kernel or otherwise.)

In my experience, the biggest trap in interpreting kernel/user run time is to look
only at user time. In reality, it seems that the sum of kernel and user time is more
reproducible. The problem is that as system activity increases, there is a spurious
decrease in user run time. In effect, as paging, etc., increases, user time leaks into
system time.

So, in practice, the only way to get truly reproducible results is to run with the
same competing activity on the system. Try to run on a machine with nobody else
logged in, and check with "ps aux" to see if there are any system processes munching
large amounts of CPU or memory. If the ratio between real time and the sum of user
and system time varies much between runs, then you have a problem.

Benchmarking Techniques, , A Note on Timing, Profiling

5.13.8 Benchmarking Techniques

4

benchmarking techniques
Given these imperfect timing tools, how do should you do benchmarking? The

answer depends on whether you are trying to measure improvements in the
performance of a single program on the same hardware, or if you are trying to
compare the performance of different programs and/or different hardware.

For the first use (measuring the effect of program modifications with constant
hardware), you should look at both system+user and real time to understand what
effect the change had on CPU use, and on I/O (including paging.) If you are working
on a CPU intensive program, the change in system+user time will give you a
moderately reproducible measure of performance across a fairly wide range of system
conditions. For a CPU intensive program, you can think of system+user as "how long
it would have taken to run if I had my own machine." So in the case of comparing
CPU intensive programs, system+user time is relatively real, and reasonable to use.

For programs that spend a substantial amount of their time paging, you really canjt
predict elapsed time under a given operating condition without benchmarking in that
condition. User or system+user time may be fairly reproducible, but it is also
relatively meaningless, since in a paging or I/O intensive program, the program is
spending its time waiting, not running, and system time and user time are both
measures of run time. A change that reduces run time might increase real time by
increasing paging.

Another common use for benchmarking is comparing the performance of the same
program on different hardware. You want to know which machine to run your
program on. For comparing different machines (operating systems, etc.), the only way
to compare that makes sense is to set up the machines in exactly the way that they will
normally be run, and then measure real time. If the program will normally be run
along with X, then run X. If the program will normally be run on a dedicated
workstation, then be sure nobody else is on the benchmarking machine. If the program
will normally be run on a machine with three other Lisp jobs, then run three other Lisp
jobs. If the program will normally be run on a machine with 8meg of memory, then
run with 8meg. Here, "normal" means "normal for that machine". If you the choice of
an unloaded RT or a heavily loaded PMAX, do your benchmarking on an unloaded
RT and a heavily loaded PMAX.

If you have a program you believe to be CPU intensive, then you might be
tempted to compare "run" times across systems, hoping to get a meaningful result
even if the benchmarking isnjt done under the expected running condition. Donjt to
this, for two reasons:

� The operating systems might not compute run time in the same way.
� Under the real running condition, the program might not be CPU intensive

after all.
In the end, only real time means anything it is the amount of time you have to

wait for the result. The only valid uses for run time are:
� To develop insight into the program. For example, if run time is much less

than elapsed time, then you are probably spending lots of time paging.
� To evaluate the relative performance of CPU intensive programs in the same

environment.
File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/Unix.ms
UNIX Interface, Event Dispatching with SERVE-EVENT, Advanced Compiler

Use and Efficiency Hints, Top

4

Chapter 6

UNIX Interface

B
B

CMU Common Lisp attempts to make the full power of the underlying
environment available to the Lisp programmer. This is done using combination of
hand-coded interfaces and foreign function calls to C libraries. Although the
techniques differ, the style of interface is similar. This chapter provides an overview
of the facilities available and general rules for using them, as well as describing
specific features in detail. It is assumed that the reader has a working familiarity with
Mach, Unix and X, as well as access to the standard system documentation.

[Sorry. Ignored \beginmenu ... \endmenu]
Reading the Command Line, Useful Variables, UNIX Interface, UNIX Interface

6.1 Reading the Command Line
The shell parses the command line with which Lisp is invoked, and passes a data
structure containing the parsed information to Lisp. This information is then extracted
from that data structure and put into a set of Lisp data structures.

command-line-strings[extensions] command-line-utility-name[extensions]
command-line-words[extensions] command-line-switches[extensions] The value of *
command-line-words* is a list of strings that make up the command line, one word per
string. The first word on the command line, i.e. the name of the program invoked
(usually lisp) is stored in *command-line-utility-name*. The value of *command-
line-switches* is a list of command-line-switch structures, with a structure for each
word on the command line starting with a hyphen. All the command line words
between the program name and the first switch are stored in *command-line-words*.

The following functions may be used to examine command-line-switch structures.
cmd-switch-name[extensions]switch Returns the name of the switch, less the
preceding hyphen and trailing equal sign (if any). cmd-switch-value[extensions]
switch Returns the value designated using an embedded equal sign, if any. If the
switch has no equal sign, then this is null. cmd-switch-words[extensions]switch
Returns a list of the words between this switch and the next switch or the end of the
command line.

Useful Variables, Lisp Equivalents for C Routines, Reading the Command Line,
UNIX Interface

6.2 Useful Variables
stdin[system] stdout[system] stderr[system] Streams connected to the standard input,
output and error file descriptors.

tty[system] A stream connected to /dev/tty.
task-self[system] task-data[system] task-notify[system] The initial ports for the

Lisp process (Mach only.)
Lisp Equivalents for C Routines, Type Translations, Useful Variables, UNIX

Interface

6.3 Lisp Equivalents for C Routines

5

The UNIX documentation describes the system interface in terms of C procedure
headers. The corresponding Lisp function will have a somewhat different interface,
since Lisp argument passing conventions and datatypes are different.

The main difference in the argument passing conventions is that Lisp does not
support passing values by reference. In Lisp, all argument and results are passed by
value. Interface functions take some fixed number of arguments and return some fixed
number of values. A given "parameter" in the C specification will appear as an
argument, return value, or both, depending on whether it is an In parameter, Out
parameter, or In/Out parameter. The basic transformation one makes to come up with
the Lisp equivalent of a C routine is to remove the Out parameters from the call, and
treat them as extra return values. In/Out parameters appear both as arguments and
return values. Since Out and In/Out parameters are only conventions in C, you must
determine the usage from the documentation.

Thus, the C routine declared as
[Sorry. Ignored \beginexample ... \endexample]

has as its Lisp equivalent something like
[Sorry. Ignored \beginlisp ... \endlisp]

If there are multiple out or in-out arguments, then there are multiple additional returns
values.

Fortunately, CMU Common Lisp programmers rarely have to worry about the
nuances of this translation process, since the names of the arguments and return values
are documented in a way so that the describe function (and the Describe Function
Call command, invoked with _C-M-Shift-A) will list this information. Since the
names of arguments and return values are usually descriptive, the information that
describe prints is usually all one needs to write a call. Most programmers use this on-
line documentation nearly all of the time, and thereby avoid the need to handle bulky
manuals and perform the translation from barbarous tongues.

Type Translations, System Area Pointers, Lisp Equivalents for C Routines, UNIX
Interface

6.4 Type Translations
aliens typesalien typesforeign language

Lisp data types have very different representations from those used by
conventional languages such as C. Since the system interfaces are designed for
conventional languages, Lisp must translate objects to and from the Lisp
representations. Many simple objects have a direct translation: integers, characters,
strings and floating point numbers are translated to the corresponding Lisp object. A
number of types, however, are implemented differently in Lisp for reasons of clarity
and efficiency.

Instances of enumerated types are expressed as keywords in Lisp. Records, arrays,
and pointer types are implemented with the facility (see page aliens.) Access
functions are defined for these types which convert fields of records, elements of
arrays, or data referenced by pointers into Lisp objects (possibly another object to be
referenced with another access function).

One should dispose of objects created by constructor functions or returned from
remote procedure calls when they are no longer of any use, freeing the virtual memory
associated with that object. Since s contain pointers to non-Lisp data, the garbage
collector cannot do this itself. If the memory was obtained from make-alien or from a
foreign function call to a routine that used malloc, then free-alien should be used. If
the was created using MACH memory allocation (e.g. vm\s\do5(a)llocate), then the
storage should be freed using vm\s\do5(d)eallocate.

System Area Pointers, Unix System Calls, Type Translations, UNIX Interface

6.5 System Area Pointers

5

pointersmallocC functionfreeC function Note that in some cases an address is
represented by a Lisp integer, and in other cases it is represented by a real pointer.
Pointers are usually used when an object in the current address space is being referred
to. The MACH virtual memory manipulation calls must use integers, since in principle
the address could be in any process, and Lisp cannot abide random pointers. Because
these types are represented differently in Lisp, one must explicitly coerce between
these representations.

System Area Pointers (SAPs) provide a mechanism that bypasses the type system
and accesses virtual memory directly. A SAP is a raw byte pointer into the lisp
process address space. SAPs are represented with a pointer descriptor, so SAP
creation can cause consing. However, the compiler uses a non-descriptor
representation for SAPs when possible, so the consing overhead is generally minimal.
non-descriptor.

sap-int[system]sap int-sap[system]int The function sap-int is used to generate an
integer corresponding to the system area pointer, suitable for passing to the kernel
interfaces (which want all addresses specified as integers). The function int-sap is used
to do the opposite conversion. The integer representation of a SAP is the byte offset of
the SAP from the start of the address space.

sap+[system]sap offset This function adds a byte offset to sap, returning a new
SAP.

sap-ref-8[system]sap offset sap-ref-16[system]sap offset sap-ref-32[system]sap
offset These functions return the 8, 16 or 32 bit unsigned integer at offset from sap.
The offset is always a byte offset, regardless of the number of bits accessed. setf may
be used with the these functions to deposit values into virtual memory.

signed-sap-ref-8[system]sap offset signed-sap-ref-16[system]sap offset signed-
sap-ref-32[system]sap offset These functions are the same as the above unsigned
operations, except that they sign-extend, returning a negative number if the high bit is
set.

Unix System Calls, File Descriptor Streams, System Area Pointers, UNIX
Interface

6.6 Unix System Calls
You probably wonjt have much cause to use them, but all the Unix system calls are
available. The Unix system call functions are in the Unix package. The name of the
interface for a particular system call is the name of the system call prepended with
unix-. The system usually defines the associated constants without any prefix name.
To find out how to use a particular system call, try using describe on it. If that is
unhelpful, look at the source in syscall.lisp or consult your system maintainer.

The Unix system calls indicate an error by returning as the first value and the
Unix error number as the second value. If the call succeeds, then the first value will
always be non-, often t.

get-unix-error-msg[Unix]error This function returns a string describing the Unix
error number error.

File Descriptor Streams, Making Sense of Mach Return Codes, Unix System
Calls, UNIX Interface

6.7 File Descriptor Streams
Many of the UNIX system calls return file descriptors. Instead of using other UNIX
system calls to perform I/O on them, you can create a stream around them. For this
purpose, fd-streams exist.

make-fd-stream[system]descriptor :input :output :element-type :buffering :name :
file :original :delete-original :auto-close :timeout

This function creates a file descriptor stream using descriptor. If input is non-,
input operations are allowed. If output is non-, output operations are allowed. The
default is input only. These keywords are defined:

5

element-type is the type of the unit of transaction for the stream, which defaults to
string-char. See the Common Lisp description of open for valid values.

buffering is the kind of output buffering desired for the stream. Legal values are
none for no buffering, line for buffering up to each newline, and full for full
buffering.

name is a simple-string name to use for descriptive purposes when the system
prints an fd-stream. When printing fd-streams, the system prepends the streams
name with Stream for . If name is unspecified, it defaults to a string containing
file or descriptor, in order of preference.

file, original : file specifies the name of the associated file when creating a file
stream (must be a simple-string). original is the simple-string name of a
backup file containing the original contents of file while writing file.
When you abort the stream by passing to close as the second argument, if you
supplied both file and original, close will rename the original name to the file
name. When you close the stream normally, if you supplied original, and
delete-original is non-, close deletes original. If auto-close is true (the default),
then descriptor will be closed when the stream is garbage collected.

timeout if non-null, then timeout is an integer number of seconds after which an
input wait should time out. If a read does time out, then the system:io-timeout
condition is signalled.

fd-stream-p[system]object This function returns if object is an fd-stream, and if
not.

fd-stream-fd[system]stream This returns the file descriptor associated with stream.
Making Sense of Mach Return Codes, Unix Interrupts, File Descriptor Streams,

UNIX Interface

6.8 Making Sense of Mach Return Codes
Whenever a remote procedure call returns a Unix error code (such as kern\s\do5(r)
eturn\s\do5(t)), it is usually prudent to check that code to see if the call was successful.
To relieve the programmer of the hassle of testing this value himself, and to centralize
the information about the meaning of non-success return codes, CMU Common Lisp
provides a number of macros and functions. See also get-unix-error-msg.

gr-error[system] function gr &optional context Signals a Lisp error, printing a
message indicating that the call to the specified function failed, with the return code
gr. If supplied, the context string is printed after the function name and before the
string associated with the gr. For example:

[Sorry. Ignored \beginexample ... \endexample]
gr-call[system]function &rest args gr-call*[system]function &rest args These

macros can be used to call a function and automatically check the GeneralReturn code
and signal an appropriate error in case of non-successful return. gr-call returns if no
error occurs, while gr-call* returns the second value of the function called.

[Sorry. Ignored \beginexample ... \endexample]
gr-bind[system] (var) (function arg) form This macro can be used much like

multiple-value-bind to bind the vars to return values resulting from calling the
function with the given args. The first return value is not bound to a variable, but is
checked as a GeneralReturn code, as in gr-call.

[Sorry. Ignored \beginexample ... \endexample]
Unix Interrupts, , Making Sense of Mach Return Codes, UNIX Interface

6.9 Unix Interrupts
unix interrupts interrupts CMU Common Lisp allows access to all the Unix signals
that can be generated under Unix. It should be noted that if this capability is abused, it

5

is possible to completely destroy the running Lisp. The following macros and
functions allow access to the Unix interrupt system. The signal names as specified in
section 2 of the iUnix Programmerjs Manual are exported from the Unix package.

[Sorry. Ignored \beginmenu ... \endmenu]
Changing Interrupt Handlers, Examples of Signal Handlers, Unix Interrupts, Unix

Interrupts

6.9.1 Changing Interrupt Handlers
with-enabled-interrupts[system] specs &rest body

This macro should be called with a list of signal specifications, specs. Each
element of specs should be a list of two or three elements: the first should be the Unix
signal for which a handler should be established, the second should be a function to be
called when the signal is received, and the third should be an optional character used
to generate the signal from the keyboard. This last item is only useful for the SIGINT,
SIGQUIT, and SIGTSTP signals. One or more signal handlers can be established in
this way. with-enabled-interrupts establishes the correct signal handlers and then
executes the forms in body. The forms are executed in an unwind-protect so that the
state of the signal handlers will be restored to what it was before the with-enabled-
interrupts was entered. A signal handler function specified as NIL will set the Unix
signal handler to the default which is normally either to ignore the signal or to cause a
core dump depending on the particular signal.

without-interrupts[system]&rest body It is sometimes necessary to execute a piece
a code that can not be interrupted. This macro the forms in body with interrupts
disabled. Note that the Unix interrupts are not actually disabled, rather they are queued
until after body has finished executing.

with-interrupts[system]&rest body When executing an interrupt handler, the
system disables interrupts, as if the handler was wrapped in in a without-interrupts.
The macro with-interrupts can be used to enable interrupts while the forms in body are
evaluated. This is useful if body is going to enter a break loop or do some long
computation that might need to be interrupted.

without-hemlock[system]&rest body For some interrupts, such as SIGTSTP
(suspend the Lisp process and return to the Unix shell) it is necessary to leave
Hemlock and then return to it. This macro executes the forms in body after exiting
Hemlock. When body has been executed, control is returned to Hemlock.

enable-interrupt[system] signal function &optional character
This function establishes function as the handler for signal. The optional character

can be specified for the SIGINT, SIGQUIT, and SIGTSTP signals and causes that
character to generate the appropriate signal from the keyboard. Unless you want to
establish a global signal handler, you should use the macro with-enabled-interrupts to
temporarily establish a signal handler. Without character, enable-interrupt returns the
old function associated with the signal. When character is specified for SIGINT,
SIGQUIT, or SIGTSTP, it returns the old character code.

ignore-interrupt[system]signal Ignore-interrupt sets the Unix signal mechanism to
ignore signal which means that the Lisp process will never see the signal. Ignore-
interrupt returns the old function associated with the signal or if none is currently
defined.

default-interrupt[system]signal Default-interrupt can be used to tell the Unix
signal mechanism to perform the default action for signal. For details on what the
default action for a signal is, see section 2 of the iUnix Programmerjs Manual. In
general, it is likely to ignore the signal or to cause a core dump.

Examples of Signal Handlers, , Changing Interrupt Handlers, Unix Interrupts

6.9.2 Examples of Signal Handlers
The following code is the signal handler used by the Lisp system for the SIGINT
signal.

[Sorry. Ignored \beginlisp ... \endlisp]

5

The without-hemlock form is used to make sure that Hemlock is exited before a break
loop is entered. The with-interrupts form is used to enable interrupts because the user
may want to generate an interrupt while in the break loop. Finally, break is called to
enter a break loop, so the user can look at the current state of the computation. If the
user proceeds from the break loop, the computation will be restarted from where it
was interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which
suspends a process and returns to the Unix shell.

[Sorry. Ignored \beginlisp ... \endlisp]
Lisp uses this interrupt handler to catch the SIGTSTP signal because it is necessary to
get out of Hemlock in a clean way before returning to the shell.

To set up these interrupt handlers, the following is recommended:
[Sorry. Ignored \beginlisp ... \endlisp]

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/server.ms
Event Dispatching with SERVE-EVENT, Alien Objects, UNIX Interface, Top

5

Chapter 7

Event Dispatching with SERVE-
EVENT

B
It is common to have multiple activities simultaneously operating in the same Lisp

process. Furthermore, Lisp programmers tend to expect a flexible development
environment. It must be possible to load and modify application programs without
requiring modifications to other running programs. CMU Common Lisp achieves this
by having a central scheduling mechanism based on an event-driven, object-oriented
paradigm.

An event is some interesting happening that should cause the Lisp process to wake
up and do something. These events include X events and activity on Unix file
descriptors. The object-oriented mechanism is only available with the first two, and it
is optional with X events as described later in this chapter. In an X event, the window
ID is the object capability and the X event type is the operation code. The Unix file
descriptor input mechanism simply consists of an association list of a handler to call
when input shows up on a particular file descriptor.

[Sorry. Ignored \beginmenu ... \endmenu]
Object Sets, The SERVE-EVENT Function, Event Dispatching with SERVE-

EVENT, Event Dispatching with SERVE-EVENT

7.1 Object Sets
object sets An iobject set is a collection of objects that have the same implementation
for each operation. Externally the object is represented by the object capability and the
operation is represented by the operation code. Within Lisp, the object is represented
by an arbitrary Lisp object, and the implementation for the operation is represented by
an arbitrary Lisp function. The object set mechanism maintains this translation from
the external to the internal representation.

make-object-set[system] name &optional default-handler This function makes a
new object set. Name is a string used only for purposes of identifying the object set
when it is printed. Default-handler is the function used as a handler when an undefined
operation occurs on an object in the set. You can define operations with the serve-
operation functions exported the extensions package for X events (x-serve-mumbles).
Objects are added with system:add-xwindow-object. Initially the object set has no
objects and no defined operations.

object-set-operation[system] object-set operation-code
This function returns the handler function that is the implementation of the

operation corresponding to operation-code in object-set. When set with setf, the setter
function establishes the new handler. The serve-operation functions exported from the
extensions package for X events (x-serve-mumbles) call this on behalf of the user
when announcing a new operation for an object set.

add-xwindow-object[system] window object object-set These functions add port
or window to object-set. Object is an arbitrary Lisp object that is associated with the
port or window capability. Window is a CLX window. When an event occurs, system:
serve-event passes object as an argument to the handler function.

The SERVE-EVENT Function, Using SERVE-EVENT with Unix File
Descriptors, Object Sets, Event Dispatching with SERVE-EVENT

6

7.2 The SERVE-EVENT Function
The system:serve-event function is the standard way for an application to wait for
something to happen. For example, the Lisp system calls system:serve-event when it
wants input from X or a terminal stream. The idea behind system:serve-event is that it
knows the appropriate action to take when any interesting event happens. If an
application calls system:serve-event when it is idle, then any other applications with
pending events can run. This allows several applications to run "at the same time"
without interference, even though there is only one thread of control. Note that if an
application is waiting for input of any kind, then other applications will get events.

serve-event[system]&optional timeout This function waits for an event to happen
and then dispatches to the correct handler function. If specified, timeout is the number
of seconds to wait before timing out. A time out of zero seconds is legal and causes
system:serve-event to poll for any events immediately available for processing.
system:serve-event returns if it serviced at least one event, and otherwise. Depending
on the application, when system:serve-event returns , you might want to call it
repeatedly with a timeout of zero until it returns .

If input is available on any designated file descriptor, then this calls the
appropriate handler function supplied by system:add-fd-handler.

Since events for many different applications may arrive simultaneously, an
application waiting for a specific event must loop on system:serve-event until the
desired event happens. Since programs such as call system:serve-event for input,
applications usually do not need to call system:serve-event at all; allows other
applicationjs handlers to run when it goes into an input wait.

serve-all-events[system]&optional timeout This function is similar to system:
serve-event, except it serves all the pending events rather than just one. It returns if it
serviced at least one event, and otherwise.

Using SERVE-EVENT with Unix File Descriptors, Using SERVE-EVENT with
the CLX Interface to X, The SERVE-EVENT Function, Event Dispatching with
SERVE-EVENT

7.3 Using SERVE-EVENT with Unix File
Descriptors
Object sets are not available for use with file descriptors, as there are only two
operations possible on file descriptors: input and output. Instead, a handler for either
input or output can be registered with system:serve-event for a specific file descriptor.
Whenever any input shows up, or output is possible on this file descriptor, the
function associated with the handler for that descriptor is funcalled with the descriptor
as itjs single argument.

add-fd-handler[system]ifd direction function This function installs and returns a
new handler for the file descriptor fd. Direction can be either input if the system
should invoke the handler when input is available or output if the system should
invoke the handler when output is possible. This returns a unique object representing
the handler, and this is a suitable argument for system:remove-fd-handler Function
must take one argument, the file descriptor.

remove-fd-handler[system]handler This function removes handler, that add-fd-
handler must have previously returned.

with-fd-handler[system] (idirection fd function) form This macro executes the
supplied forms with a handler installed using fd, direction, and function. See system:
add-fd-handler.

wait-until-fd-usable[system] idirection fd &optional timeout This function waits
for up to timeout seconds for fd to become usable for direction (either input or output)
. If timeout is or unspecified, this waits forever.

invalidate-descriptor[system]fd This function removes all handlers associated with
fd. This should only be used in drastic cases (such as I/O errors, but not necessarily
EOF). Normally, you should use remove-fd-handler to remove the specific handler.

6

[Sorry. Ignored \beginignore ... \endignore]
Using SERVE-EVENT with the CLX Interface to X, A SERVE-EVENT

Example, Using SERVE-EVENT with Unix File Descriptors, Event Dispatching with
SERVE-EVENT

7.4 Using SERVE-EVENT with the CLX Interface
to X
Remember from section 7.1, an object set is a collection of objects, CLX windows in
this case, with some set of operations, event keywords, with corresponding
implementations, the same handler functions. Since X allows multiple display
connections from a given process, you can avoid using object sets if every window in
an application or display connection behaves the same. If a particular X application on
a single display connection has windows that want to handle certain events differently,
then using object sets is a convenient way to organize this since you need some way to
map the window/event combination to the appropriate functionality.

The following is a discussion of functions exported from the extensions package
that facilitate handling CLX events through system:serve-event. The first two routines
are useful regardless of whether you use system:serve-event: open-clx-display[ext]
&optional string This function parses string for an X display specification including
display and screen numbers. String defaults to the following:

(cdr (assoc :display ext:*environment-list* :test #'eq))

If any field in the display specification is missing, this signals an error. ext:open-clx-
display returns the CLX display and screen.

flush-display-events[ext]display This function flushes all the events in displayjs
event queue including the current event, in case the user calls this from within an
event handler.

[Sorry. Ignored \beginmenu ... \endmenu]
Without Object Sets, With Object Sets, Using SERVE-EVENT with the CLX

Interface to X, Using SERVE-EVENT with the CLX Interface to X

7.4.1 Without Object Sets
Since most applications that use CLX, can avoid the complexity of object sets, these
routines are described in a separate section. The routines described in the next section
that use the object set mechanism are based on these interfaces.

enable-clx-event-handling[ext] display handler This function causes system:
serve-event to notice when there is input on displayjs connection to the X11 server.
When this happens, system:serve-event invokes handler on display in a dynamic
context with an error handler bound that flushes all events from display and returns.
By returning, the error handler declines to handle the error, but it will have cleared all
events; thus, entering the debugger will not result in infinite errors due to streams that
wait via system:serve-event for input. Calling this repeatedly on the same display
establishes handler as a new handler, replacing any previous one for display.

disable-clx-event-handling[ext]display This function undoes the effect of ext:
enable-clx-event-handling.

with-clx-event-handling[ext] (display handler) form This macro evaluates each
form in a context where system:serve-event invokes handler on display whenever
there is input on displayjs connection to the X server. This destroys any previously
established handler for display.

With Object Sets, , Without Object Sets, Using SERVE-EVENT with the CLX
Interface to X

7.4.2 With Object Sets

6

This section discusses the use of object sets and system:serve-event to handle CLX
events. This is necessary when a single X application has distinct windows that want
to handle the same events in different ways. Basically, you need some way of asking
for a given window which way you want to handle some event because this event is
handled differently depending on the window. Object sets provide this feature.

For each CLX event-key symbol-name iXXX (for example, key-press), there is a
function serve-iXXX of two arguments, an object set and a function. The serve-iXXX
function establishes the function as the handler for the XXX event in the object set.
Recall from section 7.1, system:add-xwindow-object associates some Lisp object with
a CLX window in an object set. When system:serve-event notices activity on a
window, it calls the function given to ext:enable-clx-event-handling. If this function is
ext:object-set-event-handler, it calls the function given to serve-iXXX, passing the
object given to system:add-xwindow-object and the eventjs slots as well as a couple
other arguments described below.

To use object sets in this way:
� Create an object set.
� Define some operations on it using the serve-iXXX functions.
� Add an object for every window on which you receive requests. This can be

the CLX window itself or some structure more meaningful to your application.
� Call system:serve-event to service an X event.
object-set-event-handler[ext]display This function is a suitable argument to ext:

enable-clx-event-handling. The actual event handlers defined for particular events
within a given object set must take an argument for every slot in the appropriate event.
In addition to the event slots, ext:object-set-event-handler passes the following
arguments:

� The object, as established by system:add-xwindow-object, on which the
event occurred.

� event-key, see xlib:event-case.
� send-event-p, see xlib:event-case.
Describing any ext:serve-event-key-name function, where event-key-name is an

event-key symbol-name (for example, ext:serve-key-press), indicates exactly what all
the arguments are in their correct order.

[Sorry. Ignored \beginignore ... \endignore]
When creating an object set for use with ext:object-set-event-handler, specify ext:

default-clx-event-handler as the default handler for events in that object set. If no
default handler is specified, and the system invokes the default default handler, it will
cause an error since this function takes arguments suitable for handling port messages.

A SERVE-EVENT Example, , Using SERVE-EVENT with the CLX Interface to
X, Event Dispatching with SERVE-EVENT

7.5 A SERVE-EVENT Example
This section contains two examples using system:serve-event. The first one does not
use object sets, and the second, slightly more complicated one does.

[Sorry. Ignored \beginmenu ... \endmenu]
Without Object Sets Example, With Object Sets Example, A SERVE-EVENT

Example, A SERVE-EVENT Example

7.5.1 Without Object Sets Example
This example defines an input handler for a CLX display connection. It only
recognizes key-press events. The body of the example loops over system:serve-event
to get input.

6

[Sorry. Ignored \beginlisp ... \endlisp]
[Sorry. Ignored \beginlisp ... \endlisp]

With Object Sets Example, , Without Object Sets Example, A SERVE-EVENT
Example

7.5.2 With Object Sets Example
This example involves more work, but you get a little more for your effort. It defines
two objects, input-box and slider, and establishes a key-press handler for each object,
key-pressed and slider-pressed. We have two object sets because we handle events on
the windows manifesting these objects differently, but the events come over the same
display connection.

[Sorry. Ignored \beginlisp ... \endlisp]
[Sorry. Ignored \beginlisp ... \endlisp]
[Sorry. Ignored \beginlisp ... \endlisp]
[Sorry. Ignored \beginlisp ... \endlisp]

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/alien.ms
Alien Objects, Interprocess Communication under LISP, Event Dispatching with

SERVE-EVENT, Top

6

Chapter 8

Alien Objects

B

[Sorry. Ignored \beginmenu ... \endmenu]
Introduction to Aliens, Alien Types, Alien Objects, Alien Objects

8.1 Introduction to Aliens
Because of Lispjs emphasis on dynamic memory allocation and garbage collection,
Lisp implementations use unconventional memory representations for objects. This
representation mismatch creates problems when a Lisp program must share objects
with programs written in another language. There are three different approaches to
establishing communication:

� The burden can be placed on the foreign program (and programmer) by
requiring the use of Lisp object representations. The main difficulty with this
approach is that either the foreign program must be written with Lisp
interaction in mind, or a substantial amount of foreign kgluel code must be
written to perform the translation.

� The Lisp system can automatically convert objects back and forth between
the Lisp and foreign representations. This is convenient, but translation
becomes prohibitively slow when large or complex data structures must be
shared.

� The Lisp program can directly manipulate foreign objects through the use of
extensions to the Lisp language. Most Lisp systems make use of this approach,
but the language for describing types and expressing accesses is often not
powerful enough for complex objects to be easily manipulated.

relies primarily on the automatic conversion and direct manipulation approaches:
Aliens of simple scalar types are automatically converted, while complex types are
directly manipulated in their foreign representation. Any foreign objects that canjt
automatically be converted into Lisp values are represented by objects of type alien-
value. Since Lisp is a dynamically typed language, even foreign objects must have a
run-time type; this type information is provided by encapsulating the raw pointer to
the foreign data within an alien-value object.

The Alien type language and operations are most similar to those of the C
language, but Aliens can also be used when communicating with most other languages
that can be linked with C.

Alien Types, Alien Operations, Introduction to Aliens, Alien Objects

8.2 Alien Types
Alien types have a description language based on nested list structure. For example:

[Sorry. Ignored \beginexample ... \endexample]
has the corresponding Alien type:

[Sorry. Ignored \beginlisp ... \endlisp]

7

[Sorry. Ignored \beginmenu ... \endmenu]
Defining Alien Types, Alien Types and Lisp Types, Alien Types, Alien Types

8.2.1 Defining Alien Types
Types may be either named or anonymous. With structure and union types, the name
is part of the type specifier, allowing recursively defined types such as:

[Sorry. Ignored \beginlisp ... \endlisp]
An anonymous structure or union type is specified by using the name . The with-alien
macro defines a local scope which kcapturesl any named type definitions. Other types
are not inherently named, but can be given named abbreviations using def-alien-type.

def-alien-type[alien]name type This macro globally defines name as a shorthand
for the Alien type type. When introducing global structure and union type definitions,
name may be , in which case the name to define is taken from the typejs name.

Alien Types and Lisp Types, Alien Type Specifiers, Defining Alien Types, Alien
Types

8.2.2 Alien Types and Lisp Types
The Alien types form a subsystem of the type system. An alien type specifier
provides a way to use any Alien type as a Lisp type specifier. For example

[Sorry. Ignored \beginlisp ... \endlisp]
can be used to determine whether foo is a pointer to an int. alien type specifiers can be
used in the same ways as ordinary type specifiers (like string.) Alien type declarations
are subject to the same precise type checking as any other declaration (section precise-
type-checks.)

Note that the Alien type system overlaps with normal Lisp type specifiers in some
cases. For example, the type specifier (alien single-float) is identical to single-float,
since Alien floats are automatically converted to Lisp floats. When type-of is called on
an Alien value that is not automatically converted to a Lisp value, then it will return an
alien type specifier.

Alien Type Specifiers, The C-Call Package, Alien Types and Lisp Types, Alien
Types

8.2.3 Alien Type Specifiers
Some Alien type names are symbols, but the names are still exported from the alien
package, so it is legal to say alien:single-float. These are the basic Alien type
specifiers:

Alien type*type A pointer to an object of the specified type. If type is , then it
means a pointer to anything, similar to kvoid *l in ANSI C. Currently, the only way to
detect a null pointer is:

[Sorry. Ignored \beginlisp ... \endlisp]
system-area-pointers

Alien typearraytype dimension An array of the specified dimensions, holding
elements of type type. Note that (* int) and (array int) are considered to be different
types when type checking is done; pointer and array types must be explicitly coerced
using cast.

Arrays are accessed using deref, passing the indices as additional arguments.
Elements are stored in column-major order (as in C), so the first dimension determines
only the size of the memory block, and not the layout of the higher dimensions. An
array whose first dimension is variable may be specified by using as the first
dimension. Fixed-size arrays can be allocated as array elements, structure slots or
with-alien variables. Dynamic arrays can only be allocated using make-alien.

Alien typestructname (field type bits)
A structure type with the specified name and fields. Fields are allocated at the

7

same positions used by the implementationjs C compiler. bits is intended for C-like bit
field support, but is currently unused. If name is , then the type is anonymous.

If a named Alien struct specifier is passed to def-alien-type or with-alien, then this
defines, respectively, a new global or local Alien structure type. If no fields are
specified, then the fields are taken from the current (local or global) Alien structure
type definition of name.

Alien typeunionname (field type bits) Similar to struct, but defines a union type.
All fields are allocated at the same offset, and the size of the union is the size of the
largest field. The programmer must determine which field is active from context.

Alien typeenumname spec An enumeration type that maps between integer values
and keywords. If name is , then the type is anonymous. Each spec is either a keyword,
or a list (keyword value). If integer is not supplied, then it defaults to one greater than
the value for the preceding spec (or to zero if it is the first spec.)

Alien typesignedbits A signed integer with the specified number of bits precision.
The upper limit on integer precision is determined by the machinejs word size. If no
size is specified, the maximum size will be used.

Alien typeintegerbits Identical to signed n the distinction between signed and
integer is purely stylistic.

Alien typeunsignedbits Like signed, but specifies an unsigned integer.
Alien typebooleanbits Similar to an enumeration type that maps 0 to and all other

values to . bits determines the amount of storage allocated to hold the truth value.
Alien typesingle-float A floating-point number in IEEE single format.
Alien typedouble-float A floating-point number in IEEE double format.
Alien typefunctionresult-type arg-type A Alien function that takes arguments of

the specified arg-types and returns a result of type result-type. Note that the only
context where a function type is directly specified is in the argument to alien-funcall
(see section 8.7.1.) In all other contexts, functions are represented by function pointer
types: (* (function ...)).

Alien typesystem-area-pointer A pointer which is represented in Lisp as a system-
area-pointer object (system-area-pointers.)

The C-Call Package, , Alien Type Specifiers, Alien Types

8.2.4 The C-Call Package
The c-call package exports these type-equivalents to the C type of the same name:
char, short, int, long, unsigned-char, unsigned-short, unsigned-int, unsigned-long,
float, double. c-call also exports these types:

Alien typevoid This type is used in function types to declare that no useful value is
returned. Evaluation of an alien-funcall form will return zero values.

Alien typec-string This type is similar to (* char), but is interpreted as a null-
terminated string, and is automatically converted into a Lisp string when accessed. If
the pointer is C NULL (or 0), then accessing gives Lisp .

Assigning a Lisp string to a c-string structure field or variable stores the contents
of the string to the memory already pointed to by that variable. When an Alien of type
(* char) is assigned to a c-string, then the c-string pointer is assigned to. This allows c-
string pointers to be initialized. For example:

[Sorry. Ignored \beginlisp ... \endlisp]
Storing Lisp writes C NULL to the c-string pointer.

Alien Operations, Alien Variables, Alien Types, Alien Objects

8.3 Alien Operations
This section describes the basic operations on Alien values.

[Sorry. Ignored \beginmenu ... \endmenu]
Alien Access Operations, Alien Coercion Operations, Alien Operations, Alien

Operations

7

8.3.1 Alien Access Operations
deref[alien]pointer-or-array &rest indices This function returns the value pointed to by
an Alien pointer or the value of an Alien array element. If a pointer, an optional single
index can be specified to give the equivalent of C pointer arithmetic; this index is
scaled by the size of the type pointed to. If an array, the number of indices must be the
same as the number of dimensions in the array type. deref can be set with setf to
assign a new value.

slot[alien]struct-or-union slot-name This function extracts the value of slot slot-
name from the an Alien struct or union. If struct-or-union is a pointer to a structure or
union, then it is automatically dereferenced. This can be set with setf to assign a new
value. Note that slot-name is evaluated, and need not be a compile-time constant (but
only constant slot accesses are efficiently compiled.)

Alien Coercion Operations, Alien Dynamic Allocation, Alien Access Operations,
Alien Operations

8.3.2 Alien Coercion Operations
addr[alien]alien-expr This macro returns a pointer to the location specified by alien-
expr, which must be either an Alien variable, a use of deref, a use of slot, or a use of
extern-alien.

cast[alien]alien new-type This macro converts alien to a new Alien with the
specified new-type. Both types must be an Alien pointer, array or function type. Note
that the result is not eq to the argument, but does refer to the same data bits.

sap-alien[alien]sap type alien-sap[alien]alien-value sap-alien converts sap (a
system area pointer system-area-pointers) to an Alien value with the specified type.
type is not evaluated.

alien-sap returns the SAP which points to alien-valuejs data.
The type to sap-alien and the type of the alien-value to alien-sap must some Alien

pointer, array or record type.
Alien Dynamic Allocation, , Alien Coercion Operations, Alien Operations

8.3.3 Alien Dynamic Allocation
Dynamic Aliens are allocated using the malloc library, so foreign code can call free on
the result of make-alien, and Lisp code can call free-alien on objects allocated by
foreign code.

make-alien[alien]type size This macro returns a dynamically allocated Alien of the
specified type (which is not evaluated.) The allocated memory is not initialized, and
may contain arbitrary junk. If supplied, size is an expression to evaluate to compute
the size of the allocated object. There are two major cases:

� When type is an array type, an array of that type is allocated and a pointer to
it is returned. Note that you must use deref to change the result to an array
before you can use deref to read or write elements:

[Sorry. Ignored \beginlisp ... \endlisp]
If supplied, size is used as the first dimension for the array.

� When type is any other type, then then an object for that type is allocated,
and a pointer to it is returned. So (make-alien int) returns a (* int). If size is
specified, then a block of that many objects is allocated, with the result
pointing to the first one.

free-alien[alien]alien This function frees the storage for alien (which must have
been allocated with make-alien or malloc.)

See also with-alien, which stack-allocates Aliens.
Alien Variables, Alien Data Structure Example, Alien Operations, Alien Objects

8.4 Alien Variables

7

Both local (stack allocated) and external (C global) Alien variables are supported.
[Sorry. Ignored \beginmenu ... \endmenu]

Local Alien Variables, External Alien Variables, Alien Variables, Alien Variables

8.4.1 Local Alien Variables
with-alien[alien](name type initial-value) form

This macro establishes local alien variables with the specified Alien types and
names for dynamic extent of the body. The variable names are established as symbol-
macros; the bindings have lexical scope, and may be assigned with setq or setf. This
form is analogous to defining a local variable in C: additional storage is allocated, and
the initial value is copied.

with-alien also establishes a new scope for named structures and unions. Any type
specified for a variable may contain name structure or union types with the slots
specified. Within the lexical scope of the binding specifiers and body, a locally
defined structure type foo can be referenced by its name using:

[Sorry. Ignored \beginlisp ... \endlisp]
External Alien Variables, , Local Alien Variables, Alien Variables

8.4.2 External Alien Variables
External Alien names are strings, and Lisp names are symbols. When an external
Alien is represented using a Lisp variable, there must be a way to convert from one
name syntax into the other. The macros extern-alien, def-alien-variable and def-alien-
routine use this conversion heuristic:

� Alien names are converted to Lisp names by uppercasing and replacing
underscores with hyphens.

� Conversely, Lisp names are converted to Alien names by lowercasing and
replacing hyphens with underscores.

� Both the Lisp symbol and Alien string names may be separately specified by
using a list of the form:

[Sorry. Ignored \beginlisp ... \endlisp]
def-alien-variable[alien]name type This macro defines name as an external Alien
variable of the specified Alien type. name and type are not evaluated. The Lisp name
of the variable (see above) becomes a global Alien variable in the Lisp namespace.
Global Alien variables are effectively kglobal symbol macrosl; a reference to the
variable fetches the contents of the external variable. Similarly, setting the variable
stores new contents n the new contents must be of the declared type.

For example, it is often necessary to read the global C variable errno to determine
why a particular function call failed. It is possible to define errno and make it
accessible from Lisp by the following:

[Sorry. Ignored \beginlisp ... \endlisp]
extern-alien[alien]name type This macro returns an Alien with the specified type

which points to an externally defined value. name is not evaluated, and may be
specified either as a string or a symbol. type is an unevaluated Alien type specifier.

Alien Data Structure Example, Loading Unix Object Files, Alien Variables, Alien
Objects

8.5 Alien Data Structure Example
Now that we have Alien types, operations and variables, we can manipulate foreign
data structures. This C declaration can be translated into the following Alien type:

[Sorry. Ignored \beginlisp ... \endlisp]
With this definition, the following C expression can be translated in this way:

7

[Sorry. Ignored \beginexample ... \endexample]
Or consider this example of an external C variable and some accesses:

[Sorry. Ignored \beginexample ... \endexample]
which can be made be manipulated in Lisp like this:

[Sorry. Ignored \beginlisp ... \endlisp]
Loading Unix Object Files, Alien Function Calls, Alien Data Structure Example,

Alien Objects

8.6 Loading Unix Object Files
Foreign object files are loaded into the running Lisp process by load-foreign. First, it
runs the linker on the files and libraries, creating an absolute Unix object file. This
object file is then loaded into into the currently running Lisp. The external symbols
defining routines and variables are made available for future external references (e.g.
by extern-alien.) load-foreign must be run before any of the defined symbols are
referenced.

Note that if a Lisp core image is saved (using save-lisp), all loaded foreign code is
lost when the image is restarted.

load-foreign[alien]files &key libraries base-file env
files is a simple-string or list of simple-strings specifying the names of the object

files. libraries is a list of simple-strings specifying libraries in a format that ld, the
Unix linker, expects. The default value for libraries is ("-lc") (i.e., the standard C
library). base-file is the file to use for the initial symbol table information. The default
is the Lisp start up code: path:lisp. env should be a list of simple strings in the format
of Unix environment variables (i.e., A=B, where A is an environment variable and B
is its value). The default value for env is the environment information available at the
time Lisp was invoked. Unless you are certain that you want to change this, you
should just use the default.

Alien Function Calls, Step-by-Step Alien Example, Loading Unix Object Files,
Alien Objects

8.7 Alien Function Calls
The foreign function call interface allows a Lisp program to call functions written in
other languages. The current implementation of the foreign function call interface
assumes a C calling convention and thus routines written in any language that adheres
to this convention may be called from Lisp.

Lisp sets up various interrupt handling routines and other environment information
when it first starts up, and expects these to be in place at all times. The C functions
called by Lisp should either not change the environment, especially the interrupt entry
points, or should make sure that these entry points are restored when the C function
returns to Lisp. If a C function makes changes without restoring things to the way they
were when the C function was entered, there is no telling what will happen.

[Sorry. Ignored \beginmenu ... \endmenu]
alien-funcall, def-alien-routine, Alien Function Calls, Alien Function Calls

8.7.1 The alien-funcall Primitive
alien-funcall[alien]alien-function &rest arguments This function is the foreign
function call primitive: alien-function is called with the supplied arguments and its
value is returned. The alien-function is an arbitrary run-time expression; to call a
constant function, use extern-alien or def-alien-routine.

The type of alien-function must be (alien (function ...)) or (alien (* (function ...))),
alien-function-types. The function type is used to determine how to call the function
(as through it was declared with a prototype.) The type need not be known at compile
time, but only known-type calls are efficiently compiled. Limitations:

7

� Structure type return values are not implemented.
� Passing of structures by value is not implemented.
Here is an example which allocates a (struct foo), calls a foreign function to

initialize it, then returns a Lisp vector of all the (* (struct foo)) objects filled in by the
foreign call:

[Sorry. Ignored \beginlisp ... \endlisp]
def-alien-routine, def-alien-routine Example, alien-funcall, Alien Function Calls

8.7.2 The def-alien-routine Macro
def-alien-routine[alien]name result-type (aname atype style)

This macro is a convenience for automatically generating Lisp interfaces to simple
foreign functions. The primary feature is the parameter style specification, which
translates the C pass-by-reference idiom into additional return values.

name is usually a string external symbol, but may also be a symbol Lisp name or a
list of the Lisp name and the foreign name. If only one name is specified, the other is
automatically derived, (external-aliens.)

result-type is the Alien type of the return value. Each remaining subform specifies
an argument to the foreign function. aname is the symbol name of the argument to the
constructed function (for documentation) and atype is the Alien type of corresponding
foreign argument. The semantics of the actual call are the same as for alien-funcall.
style should be one of the following:

:in specifies that the argument is passed by value. This is the default. in arguments
have no corresponding return value from the Lisp function.

:out specifies a pass-by-reference output value. The type of the argument must be
a pointer to a fixed sized object (such as an integer or pointer). out and in-out
cannot be used with pointers to arrays, records or functions. An object of the
correct size is allocated, and its address is passed to the foreign function. When
the function returns, the contents of this location are returned as one of the
values of the Lisp function.

:copy is similar to in, but the argument is copied to a pre-allocated object and a
pointer to this object is passed to the foreign routine.

:in-out is a combination of copy and out. The argument is copied to a pre-
allocated object and a pointer to this object is passed to the foreign routine. On
return, the contents of this location is returned as an additional value.

Any efficiency-critical foreign interface function should be inline expanded by
preceding def-alien-routine with:

[Sorry. Ignored \beginlisp ... \endlisp]
In addition to avoiding the Lisp call overhead, this allows pointers, word-integers and
floats to be passed using non-descriptor representations, avoiding consing (non-
descriptor.)

def-alien-routine Example, Calling Lisp from C, def-alien-routine, Alien Function
Calls

8.7.3 def-alien-routine Example
Consider the C function cfoo with the following calling convention:

[Sorry. Ignored \beginexample ... \endexample]
which can be described by the following call to def-alien-routine:

[Sorry. Ignored \beginlisp ... \endlisp]
The Lisp function cfoo will have two arguments (str and a) and two return values (a
and i).

Calling Lisp from C, , def-alien-routine Example, Alien Function Calls

7

8.7.4 Calling Lisp from C
There is currently a mechanism for calling Lisp functions from C, but it is rather
restricted, and is scheduled for replacement. If you need to call Lisp functions from C,
contact us and we will let you know what capabilities are available in the system you
have.

Step-by-Step Alien Example, , Alien Function Calls, Alien Objects

8.8 Step-by-Step Alien Example
This section presents a complete example of an interface to a somewhat complicated
C function. This example should give a fairly good idea of how to get the effect you
want for almost any kind of C function. Suppose you have the following C function
which you want to be able to call from Lisp in the file test.c:

struct c_struct
int x;
char *s;

;
struct c_struct *c_function (i, s, r, a)

int i;
char *s;
struct c_struct *r;
int a[10];

int j;
struct c_struct *r2;
printf("i = %d\n", i);
printf("s = %s\n", s);
printf("r->x = %d\n", r->x);
printf("r->s = %s\n", r->s);
for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a

[j]);
r2 = (struct c_struct *) malloc (sizeof(struct c_struct)

);
r2->x = i + 5;
r2->s = "A C string";
return(r2);

;

It is possible to call this function from Lisp using the file test.lisp whose contents is:
[Sorry. Ignored \beginlisp ... \endlisp]

To execute the above example, it is necessary to compile the C routine as follows:
[Sorry. Ignored \beginexample ... \endexample]

In order to enable incremental loading with some linkers, you may need to say:
[Sorry. Ignored \beginexample ... \endexample]

Once the C code has been compiled, you can start up Lisp and load it in:
[Sorry. Ignored \beginexample ... \endexample]

If any of the foreign functions do output, they should not be called from within
Hemlock. Depending on the situation, various strange behavior occurs. Under X, the
output goes to the window in which Lisp was started; on a terminal, the output will
overwrite the Hemlock screen image; in a Hemlock slave, standard output is /dev/null
by default, so any output is discarded.

7

File:/afs/cs.cmu.edu/project/clisp/hackers/ram/docs/cmu-user/ipc.ms
Interprocess Communication under LISP, Debugger Programmerjs Interface,

Alien Objects, Top

7

Chapter 9

Interprocess Communication under
LISP

_ Written by William Lott and Bill Chiles

CMU Common Lisp offers a facility for interprocess communication (IPC) on top
of using Unix system calls and the complications of that level of IPC. There is a
simple remote-procedure-call (RPC) package build on top of TCP/IP sockets.

[Sorry. Ignored \beginmenu ... \endmenu]
The REMOTE Package, The WIRE Package, Interprocess Communication under

LISP, Interprocess Communication under LISP

9.1 The REMOTE Package
The remote package provides simple RPC facility including interfaces for creating
servers, connecting to already existing servers, and calling functions in other Lisp
processes. The routines for establishing a connection between two processes, create-
request-server and connect-to-remote-server, return wire structures. A wire maintains
the current state of a connection, and all the RPC forms require a wire to indicate
where to send requests.

[Sorry. Ignored \beginmenu ... \endmenu]
Connecting Servers and Clients, Remote Evaluations, The REMOTE Package,

The REMOTE Package

9.1.1 Connecting Servers and Clients
Before a client can connect to a server, it must know the network address on which the
server accepts connections. Network addresses consist of a host address or name, and
a port number. Host addresses are either a string of the form VANCOUVER.SLISP.
CS.CMU.EDU or a 32 bit unsigned integer. Port numbers are 16 bit unsigned integers.
Note: port in this context has nothing to do with Mach ports and message passing.

When a process wants to receive connection requests (that is, become a server), it
first picks an integer to use as the port. Only one server (Lisp or otherwise) can use a
given port number on a given machine at any particular time. This can be an iterative
process to find a free port: picking an integer and calling create-request-server. This
function signals an error if the chosen port is unusable. You will probably want to
write a loop using handler-case, catching conditions of type error, since this function
does not signal more specific conditions.

create-request-server[wire] port &optional on-connect create-request-server sets
up the current Lisp to accept connections on the given port. If port is unavailable for
any reason, this signals an error. When a client connects to this port, the acceptance
mechanism makes a wire structure and invokes the on-connect function. Invoking this
function has a couple purposes, and on-connect may be in which case the system
foregoes invoking any function at connect time.

The on-connect function is both a hook that allows you access to the wire created
by the acceptance mechanism, and it confirms the connection. This function takes two
arguments, the wire and the host address of the connecting process. See the section on
host addresses below. When on-connect is , the request server allows all connections.

8

When it is non-, the function returns two values, whether to accept the connection and
a function the system should call when the connection terminates. Either value may be
, but when the first value is , the acceptance mechanism destroys the wire.

create-request-server returns an object that destroy-request-server uses to
terminate a connection.

destroy-request-server[wire]server destroy-request-server takes the result of
create-request-server and terminates that server. Any existing connections remain
intact, but all additional connection attempts will fail.

connect-to-remote-server[wire] host port &optional on-death connect-to-remote-
server attempts to connect to a remote server at the given port on host and returns a
wire structure if it is successful. If on-death is non-, it is a function the system invokes
when this connection terminates.

Remote Evaluations, Remote Objects, Connecting Servers and Clients, The
REMOTE Package

9.1.2 Remote Evaluations
After the server and client have connected, they each have a wire allowing function
evaluation in the other process. This RPC mechanism has three flavors: for side-effect
only, for a single value, and for multiple values.

Only a limited number of data types can be sent across wires as arguments for
remote function calls and as return values: integers inclusively less than 32 bits in
length, symbols, lists, and remote-objects (remote-objs). The system sends symbols as
two strings, the package name and the symbol name, and if the package doesnjt exist
remotely, the remote process signals an error. The system ignores other slots of
symbols. Lists may be any tree of the above valid data types. To send other data types
you must represent them in terms of these supported types. For example, you could
use prin1-to-string locally, send the string, and use read-from-string remotely.

remote[wire]iwire call-specs The remote macro arranges for the process at the
other end of wire to invoke each of the functions in the call-specs. To make sure the
system sends the remote evaluation requests over the wire, you must call wire-force-
output.

Each of call-specs looks like a function call textually, but it has some odd
constraints and semantics. The function position of the form must be the symbolic
name of a function. remote evaluates each of the argument subforms for each of the
call-specs locally in the current context, sending these values as the arguments for the
functions.

Consider the following example:

(defun write-remote-string (str)
(declare (simple-string str))
(wire:remote wire
(write-string str)))

The value of str in the local process is passed over the wire with a request to invoke
write-string on the value. The system does not expect to remotely evaluate str for a
value in the remote process.

wire-force-output[wire]wire wire-force-output flushes all internal buffers
associated with wire, sending the remote requests. This is necessary after a call to
remote.

remote-value[wire]iwire call-spec The remote-value macro is similar to the remote
macro. remote-value only takes one call-spec, and it returns the value returned by the
function call in the remote process. The value must be a valid type the system can
send over a wire, and there is no need to call wire-force-output in conjunction with
this interface.

If client unwinds past the call to remote-value, the server continues running, but
the system ignores the value the server sends back.

8

If the server unwinds past the remotely requested call, instead of returning
normally, remote-value returns two values, and . Otherwise this returns the result of
the remote evaluation and .

remote-value-bind[wire] iwire (variable) remote-form local-forms remote-value-
bind is similar to multiple-value-bind except the values bound come from remote-
formjs evaluation in the remote process. The local-forms execute in an implicit progn.

If the client unwinds past the call to remote-value-bind, the server continues
running, but the system ignores the values the server sends back.

If the server unwinds past the remotely requested call, instead of returning
normally, the local-forms never execute, and remote-value-bind returns .

Remote Objects, Host Addresses, Remote Evaluations, The REMOTE Package

9.1.3 Remote Objects
The wire mechanism only directly supports a limited number of data types for
transmission as arguments for remote function calls and as return values: integers
inclusively less than 32 bits in length, symbols, lists. Sometimes it is useful to allow
remote processes to refer to local data structures without allowing the remote process
to operate on the data. We have remote-objects to support this without the need to
represent the data structure in terms of the above data types, to send the representation
to the remote process, to decode the representation, to later encode it again, and to
send it back along the wire.

You can convert any Lisp object into a remote-object. When you send a remote-
object along a wire, the system simply sends a unique token for it. In the remote
process, the system looks up the token and returns a remote-object for the token.
When the remote process needs to refer to the original Lisp object as an argument to a
remote call back or as a return value, it uses the remote-object it has which the system
converts to the unique token, sending that along the wire to the originating process.
Upon receipt in the first process, the system converts the token back to the same (eq)
remote-object.

make-remote-object[wire]object make-remote-object returns a remote-object that
has object as its value. The remote-object can be passed across wires just like the
directly supported wire data types.

remote-object-p[wire]object The function remote-object-p returns if object is a
remote object and otherwise.

remote-object-local-p[wire]remote The function remote-object-local-p returns if
remote refers to an object in the local process. This is can only occur if the local
process created remote with make-remote-object.

remote-object-eq[wire]iobj1 obj2 The function remote-object-eq returns if iobj1
and iobj2 refer to the same (eq) lisp object, regardless of which process created the
remote-objects.

remote-object-value[wire]remote This function returns the original object used to
create the given remote object. It is an error if some other process originally created
the remote-object.

forget-remote-translation[wire]object This function removes the information and
storage necessary to translate remote-objects back into object, so the next gc can
reclaim the memory. You should use this when you no longer expect to receive
references to object. If some remote process does send a reference to object, remote-
object-value signals an error.

Host Addresses, , Remote Objects, The REMOTE Package

9.1.4 Host Addresses
The operating system maintains a database of all the valid host addresses. You can use
this database to convert between host names and addresses and vice-versa.

lookup-host-entry[ext]host lookup-host-entry searches the database for the given
host and returns a host-entry structure for it. If it fails to find host in the database, it

8

returns . Host is either the address (as an integer) or the name (as a string) of the
desired host.

host-entry-name[ext]host-entry host-entry-aliases[ext]host-entry host-entry-addr-
list[ext]host-entry host-entry-addr[ext]host-entry host-entry-name, host-entry-aliases,
and host-entry-addr-list each return the indicated slot from the host-entry structure.
host-entry-addr returns the primary (first) address from the list returned by host-entry-
addr-list.

The WIRE Package, Out-Of-Band Data, The REMOTE Package, Interprocess
Communication under LISP

9.2 The WIRE Package
The wire package provides for sending data along wires. The remote package sits on
top of this package. All data sent with a given output routine must be read in the
remote process with the complementary fetching routine. For example, if you send so
a string with wire-output-string, the remote process must know to use wire-get-string.
To avoid rigid data transfers and complicated code, the interface supports sending
tagged data. With tagged data, the system sends a tag announcing the type of the next
data, and the remote system takes care of fetching the appropriate type.

When using interfaces at the wire level instead of the RPC level, the remote
process must read everything sent by these routines. If the remote process leaves any
input on the wire, it will later mistake the data for an RPC request causing unknown
lossage.

[Sorry. Ignored \beginmenu ... \endmenu]
Untagged Data, Tagged Data, The WIRE Package, The WIRE Package

9.2.1 Untagged Data
When using these routines both ends of the wire know exactly what types are coming
and going and in what order. This data is restricted to the following types:

� 8 bit unsigned bytes.
� 32 bit unsigned bytes.
� 32 bit integers.
� simple-strings less than 65535 in length.
wire-output-byte[wire]iwire byte wire-get-byte[wire]wire wire-output-number

[wire]iwire number wire-get-number[wire]wire &optional signed wire-output-string
[wire]iwire string wire-get-string[wire]wire These functions either output or input an
object of the specified data type. When you use any of these output routines to send
data across the wire, you must use the corresponding input routine interpret the data.

Tagged Data, Making Your Own Wires, Untagged Data, The WIRE Package

9.2.2 Tagged Data
When using these routines, the system automatically transmits and interprets the tags
for you, so both ends can figure out what kind of data transfers occur. Sending tagged
data allows a greater variety of data types: integers inclusively less than 32 bits in
length, symbols, lists, and remote-objects (remote-objs). The system sends symbols as
two strings, the package name and the symbol name, and if the package doesnjt exist
remotely, the remote process signals an error. The system ignores other slots of
symbols. Lists may be any tree of the above valid data types. To send other data types
you must represent them in terms of these supported types. For example, you could
use prin1-to-string locally, send the string, and use read-from-string remotely.

wire-output-object[wire]iwire object &optional cache-it wire-get-object[wire]wire
The function wire-output-object sends object over wire preceded by a tag indicating
its type.

8

If cache-it is non-, this function only sends object the first time it gets object. Each
end of the wire associates a token with object, similar to remote-objects, allowing you
to send the object more efficiently on successive transmissions. Cache-it defaults to
for symbols and for other types. Since the RPC level requires function names, a high-
level protocol based on a set of function calls saves time in sending the functionsj
names repeatedly.

The function wire-get-object reads the results of wire-output-object and returns
that object.

Making Your Own Wires, , Tagged Data, The WIRE Package

9.2.3 Making Your Own Wires
You can create wires manually in addition to the remote packagejs interface creating
them for you. To create a wire, you need a Unix ifile descriptor. If you are unfamiliar
with Unix file descriptors, see section 2 of the Unix manual pages.

make-wire[wire]descriptor The function make-wire creates a new wire when
supplied with the file descriptor to use for the underlying I/O operations.

wire-p[wire]object This function returns if object is indeed a wire, otherwise.
wire-fd[wire]wire This function returns the file descriptor used by the wire.
Out-Of-Band Data, , The WIRE Package, Interprocess Communication under

LISP

9.3 Out-Of-Band Data
The TCP/IP protocol allows users to send data asynchronously, otherwise known as
out-of-band data. When using this feature, the operating system interrupts the
receiving process if this process has chosen to be notified about out-of-band data. The
receiver can grab this input without affecting any information currently queued on the
socket. Therefore, you can use this without interfering with any current activity due to
other wire and remote interfaces.

Unfortunately, most implementations of TCP/IP are broken, so use of out-of-band
data is limited for safety reasons. You can only reliably send one character at a time.

This routines in this section provide a mechanism for establishing handlers for out-
of-band characters and for sending them out-of-band. These all take a Unix file
descriptor instead of a wire, but you can fetch a wirejs file descriptor with wire-fd.

add-oob-handler[wire]ifd char handler The function add-oob-handler arranges for
handler to be called whenever char shows up as out-of-band data on the file descriptor
fd.

remove-oob-handler[wire]ifd char This function removes the handler for the
character char on the file descriptor fd.

remove-all-oob-handlers[wire]fd This function removes all handlers for the file
descriptor fd.

send-character-out-of-band[wire]ifd char This function Sends the character char
down the file descriptor fd out-of-band.

File:debug-int.tex Debugger Programmerjs Interface, Function Index,
Interprocess Communication under LISP, Top

8

Chapter 10

Debugger Programmerjs Interface
The debugger programmers interface is exported from from the "DEBUG-
INTERNALS" or "DI" package. This is a CMU extension that allows debugging tools
to be written without detailed knowledge of the compiler or run-time system.

Some of the interface routines take a code-location as an argument. As described
in the section on code-locations, some code-locations are unknown. When a function
calls for a basic-code-location, it takes either type, but when it specifically names the
argument code-location, the routine will signal an error if you give it an unknown
code-location.

[Sorry. Ignored \beginmenu ... \endmenu]
DI Exceptional Conditions, Debug-variables, Debugger Programmerjs Interface,

Debugger Programmerjs Interface

10.1 DI Exceptional Conditions
Some of these operations fail depending on the availability debugging information. In
the most severe case, when someone saved a Lisp image stripping all debugging data
structures, no operations are valid. In this case, even backtracing and finding frames is
impossible. Some interfaces can simply return values indicating the lack of
information, or their return values are naturally meaningful in light missing data.
Other routines, as documented below, will signal serious-conditions when they
discover awkward situations. This interface does not provide for programs to detect
these situations other than by calling a routine that detects them and signals a
condition. These are serious-conditions because the program using the interface must
handle them before it can correctly continue execution. These debugging conditions
are not errors since it is no fault of the programmers that the conditions occur.

[Sorry. Ignored \beginmenu ... \endmenu]
Debug-conditions, Debug-errors, DI Exceptional Conditions, DI Exceptional

Conditions

10.1.1 Debug-conditions
The debug internals interface signals conditions when it canjt adhere to its contract.
These are serious-conditions because the program using the interface must handle
them before it can correctly continue execution. These debugging conditions are not
errors since it is no fault of the programmers that the conditions occur. The interface
does not provide for programs to detect these situations other than calling a routine
that detects them and signals a condition.

Conditiondebug-condition
This condition inherits from serious-condition, and all debug-conditions inherit

from this. These must be handled, but they are not programmer errors.
Conditionno-debug-info
This condition indicates there is absolutely no debugging information available.
Conditionno-debug-function-returns
This condition indicates the system cannot return values from a frame since its

debug-function lacks debug information details about returning values.
Conditionno-debug-blocks This condition indicates that a function was not

compiled with debug-block information, but this information is necessary necessary
for some requested operation.

9

Conditionno-debug-variables Similar to no-debug-blocks, except that variable
information was requested.

Conditionlambda-list-unavailable Similar to no-debug-blocks, except that lambda
list information was requested.

Conditioninvalid-value
This condition indicates a debug-variable has :invalid or :unknown value in a

particular frame.
Conditionambiguous-variable-name
This condition indicates a user supplied debug-variable name identifies more than

one valid variable in a particular frame.
Debug-errors, , Debug-conditions, DI Exceptional Conditions

10.1.2 Debug-errors
These are programmer errors resulting from misuse of the debugging toolsj
programmersj interface. You could have avoided an occurrence of one of these by
using some routine to check the use of the routine generating the error.

Conditiondebug-error This condition inherits from error, and all user programming
errors inherit from this condition.

Conditionunhandled-condition This error results from a signalled debug-condition
occurring without anyone handling it.

Conditionunknown-code-location This error indicates the invalid use of an
unknown-code-location.

Conditionunknown-debug-variable
This error indicates an attempt to use a debug-variable in conjunction with an

inappropriate debug-function; for example, checking the variablejs validity using a
code-location in the wrong debug-function will signal this error.

Conditionframe-function-mismatch
This error indicates you called a function returned by preprocess-for-eval on a

frame other than the one for which the function had been prepared.
Debug-variables, Frames, DI Exceptional Conditions, Debugger Programmerjs

Interface

10.2 Debug-variables
Debug-variables represent the constant information about where the system stores
argument and local variable values. The system uniquely identifies with an integer
every instance of a variable with a particular name and package. To access a value,
you must supply the frame along with the debug-variable since these are particular to
a function, not every instance of a variable on the stack.

debug-variable-namedebug-variable This function returns the name of the debug-
variable. The name is the name of the symbol used as an identifier when writing the
code.

debug-variable-packagedebug-variable This function returns the package name of
the debug-variable. This is the package name of the symbol used as an identifier when
writing the code.

debug-variable-symboldebug-variable This function returns the symbol from
interning debug-variable-name in the package named by debug-variable-package.

debug-variable-iddebug-variable This function returns the integer that makes
debug-variablejs name and package name unique with respect to other debug-
variablejs in the same function.

debug-variable-validitydebug-variable basic-code-location This function returns
three values reflecting the validity of debug-variablejs value at basic-code-location:

:valid The value is known to be available.
:invalid The value is known to be unavailable.
:unknown The valuejs availability is unknown.

9

debug-variable-valuedebug-variable frame This function returns the value stored
for debug-variable in frame. The value may be invalid. This is SETFjable.

debug-variable-valid-valuedebug-variable frame This function returns the value
stored for debug-variable in frame. If the value is not :valid, then this signals an
invalid-value error.

Frames, Debug-functions, Debug-variables, Debugger Programmerjs Interface

10.3 Frames
Frames describe a particular call on the stack for a particular thread. This is the
environment for name resolution, getting arguments and locals, and returning values.
The stack conceptually grows up, so the top of the stack is the most recently called
function.

top-frame, frame-down, frame-up, and frame-debug-function can only fail when
there is absolutely no debug information available. This can only happen when
someone saved a Lisp image specifying that the system dump all debugging data.

top-frame This function never returns the frame for itself, always the frame before
calling top-frame.

frame-downframe This returns the frame immediately below frame on the stack.
When frame is the bottom of the stack, this returns .

frame-upframe This returns the frame immediately above frame on the stack.
When frame is the top of the stack, this returns .

frame-debug-functionframe This function returns the debug-function for the
function whose call frame represents.

frame-code-locationframe This function returns the code-location where framejs
debug-function will continue running when program execution returns to frame. If
someone interrupted this frame, the result could be an unknown code-location.

frame-catchesframe This function returns an a-list for all active catches in frame
mapping catch tags to the code-locations at which the catch re-enters.

eval-in-frameframe form This evaluates form in framejs environment. This can
signal several different debug-conditions since its success relies on a variety of inexact
debug information: invalid-value, ambiguous-variable-name, frame-function-
mismatch. See also preprocess-for-eval.

return-from-frameframe values This returns the elements in the list values as
multiple values from frame as if the function frame represents returned these values.
This signals a no-debug-function-returns condition when framejs debug-function lacks
information on returning values.

iNot Yet Implemented
Debug-functions, Debug-blocks, Frames, Debugger Programmerjs Interface

10.4 Debug-functions
Debug-functions represent the static information about a function determined at
compile time n argument and variable storage, their lifetime information, etc. The
debug-function also contains all the debug-blocks representing basic-blocks of code,
and these contains information about specific code-locations in a debug-function.

do-debug-function-blocks (block-var debug-function result-form) form
This executes the forms in a context with block-var bound to each debug-block in

debug-function successively. Result-form is an optional form to execute for a return
value, and do-debug-function-blocks returns if there is no result-form. This signals a
no-debug-blocks condition when the debug-function lacks debug-block information.

debug-function-lambda-listdebug-function This function returns a list representing
the lambda-list for debug-function. The list has the following structure:

[Sorry. Ignored \beginexample ... \endexample]
Each varn is a debug-variable; however, the symbol :deleted appears instead whenever
the argument remains unreferenced throughout debug-function.

9

If there is no lambda-list information, this signals a lambda-list-unavailable
condition.

do-debug-function-variables (var debug-function result) form This macro executes
each form in a context with var bound to each debug-variable in debug-function. This
returns the value of executing result (defaults to). This may iterate over only some of
debug-functionjs variables or none depending on debug policy; for example, possibly
the compilation only preserved argument information.

debug-variable-info-availabledebug-function This function returns whether there
is any variable information for debug-function. This is useful for distinguishing
whether there were no locals in a function or whether there was no variable
information. For example, if do-debug-function-variables executes its forms zero
times, then you can use this function to determine the reason.

debug-function-symbol-variablesdebug-function symbol This function returns a
list of debug-variables in debug-function having the same name and package as
symbol. If symbol is uninterned, then this returns a list of debug-variables without
package names and with the same name as symbol. The result of this function is
limited to the availability of variable information in debug-function; for example,
possibly debug-function only knows about its arguments.

ambiguous-debug-variablesdebug-function name-prefix-string This function
returns a list of debug-variables in debug-function whose names contain name-prefix-
string as an initial substring. The result of this function is limited to the availability of
variable information in debug-function; for example, possibly debug-function only
knows about its arguments.

preprocess-for-evalform basic-code-location This function returns a function of
one argument that evaluates form in the lexical context of basic-code-location. This
allows efficient repeated evaluation of form at a certain place in a function which
could be useful for conditional breaking. This signals a no-debug-variables condition
when the code-locationjs debug-function has no debug-variable information available.
The returned function takes a frame as an argument. See also eval-in-frame.

function-debug-functionfunction This function returns a debug-function that
represents debug information for function.

debug-function-kinddebug-function This function returns the kind of function
debug-function represents. The value is one of the following:

:optional This kind of function is an entry point to an ordinary function. It handles
optional defaulting, parsing keywords, etc.

:external This kind of function is an entry point to an ordinary function. It checks
argument values and count and calls the defined function.

:top-level This kind of function executes one or more random top-level forms
from a file.

:cleanup This kind of function represents the cleanup forms in an unwind-protect.
This kind of function is not one of the above; that is, it is not specially marked in

any way.
debug-function-functiondebug-function This function returns the Common Lisp

function associated with the debug-function. This returns if the function is unavailable
or is non-existent as a user callable function object.

debug-function-namedebug-function This function returns the name of the
function represented by debug-function. This may be a string or a cons; do not assume
it is a symbol.

Debug-blocks, Breakpoints, Debug-functions, Debugger Programmerjs Interface

10.5 Debug-blocks
Debug-blocks contain information pertinent to a specific range of code in a debug-
function.

9

do-debug-block-locations (code-var debug-block result) form This macro executes
each form in a context with code-var bound to each code-location in debug-block.
This returns the value of executing result (defaults to).

debug-block-successorsdebug-block This function returns the list of possible code-
locations where execution may continue when the basic-block represented by debug-
block completes its execution.

debug-block-elsewhere-pdebug-block This function returns whether debug-block
represents elsewhere code. This is code the compiler has moved out of a functionjs
code sequence for optimization reasons. Code-locations in these blocks are unsuitable
for stepping tools, and the first code-location has nothing to do with a normal starting
location for the block.

Breakpoints, Code-locations, Debug-blocks, Debugger Programmerjs Interface

10.6 Breakpoints
A breakpoint represents a function the system calls with the current frame when
execution passes a certain code-location. A break point is active or inactive
independent of its existence. They also have an extra slot for users to tag the
breakpoint with information.

make-breakpointhook-function what :kind :info :function-end-cookie This
function creates and returns a breakpoint. When program execution encounters the
breakpoint, the system calls hook-function. Hook-function takes the current frame for
the function in which the program is running and the breakpoint object.

what and kind determine where in a function the system invokes hook-function.
what is either a code-location or a debug-function. kind is one of :code-location, :
function-start, or :function-end. Since the starts and ends of functions may not have
code-locations representing them, designate these places by supplying what as a
debug-function and kind indicating the :function-start or :function-end. When what is
a debug-function and kind is :function-end, then hook-function must take two
additional arguments, a list of values returned by the function and a function-end-
cookie.

info is information supplied by and used by the user.
function-end-cookie is a function. To implement function-end breakpoints, the

system uses starter breakpoints to establish the function-end breakpoint for each
invocation of the function. Upon each entry, the system creates a unique cookie to
identify the invocation, and when the user supplies a function for this argument, the
system invokes it on the cookie. The system later invokes the function-end breakpoint
hook on the same cookie. The user may save the cookie when passed to the function-
end-cookie function for later comparison in the hook function.

This signals an error if what is an unknown code-location.
activate-breakpointbreakpoint This function causes the system to invoke the

breakpointjs hook-function until the next call to deactivate-breakpoint or delete-
breakpoint. The system invokes breakpoint hook functions in the opposite order that
you activate them.

deactivate-breakpointbreakpoint This function stops the system from invoking the
breakpointjs hook-function.

breakpoint-active-pbreakpoint This returns whether breakpoint is currently active.
breakpoint-hook-functionbreakpoint This function returns the breakpointjs

function the system calls when execution encounters breakpoint, and it is active. This
is SETFjable.

breakpoint-infobreakpoint This function returns breakpointjs information supplied
by the user. This is SETFjable.

breakpoint-kindbreakpoint This function returns the breakpointjs kind
specification.

breakpoint-whatbreakpoint This function returns the breakpointjs what
specification.

9

delete-breakpointbreakpoint This function frees system storage and removes
computational overhead associated with breakpoint. After calling this, breakpoint is
useless and can never become active again.

Code-locations, Debug-sources, Breakpoints, Debugger Programmerjs Interface

10.7 Code-locations
Code-locations represent places in functions where the system has correct information
about the functionjs environment and where interesting operations can occur n asking
for a local variablejs value, setting breakpoints, evaluating forms within the functionjs
environment, etc.

Sometimes the interface returns unknown code-locations. These represent places
in functions, but there is no debug information associated with them. Some operations
accept these since they may succeed even with missing debug data. These operationsj
argument is named basic-code-location indicating they take known and unknown
code-locations. If an operation names its argument code-location, and you supply an
unknown one, it will signal an error. For example, frame-code-location may return an
unknown code-location if someone interrupted Lisp in the given frame. The system
knows where execution will continue, but this place in the code may not be a place for
which the compiler dumped debug information.

code-location-debug-functionbasic-code-location This function returns the debug-
function representing information about the function corresponding to the code-
location.

code-location-debug-blockbasic-code-location This function returns the debug-
block containing code-location if it is available. Some debug policies inhibit debug-
block information, and if none is available, then this signals a no-debug-blocks
condition.

code-location-top-level-form-offsetcode-location This function returns the number
of top-level forms before the one containing code-location as seen by the compiler in
some compilation unit. A compilation unit is not necessarily a single file, see the
section on debug-sources.

code-location-form-numbercode-location This function returns the number of the
form corresponding to code-location. The form number is derived by walking the
subforms of a top-level form in depth-first order. While walking the top-level form,
count one in depth-first order for each subform that is a cons. See form-number-
translations.

code-location-debug-sourcecode-location This function returns code-locationjs
debug-source.

code-location-unknown-pbasic-code-location This function returns whether basic-
code-location is unknown. It returns when the code-location is known.

code-location=code-location1 code-location2 This function returns whether the
two code-locations are the same.

Debug-sources, Source Translation Utilities, Code-locations, Debugger
Programmerjs Interface

10.8 Debug-sources
Debug-sources represent how to get back the source for some code. The source is
either a file (compile-file or load), a lambda-expression (compile, defun, defmacro), or
a stream (something particular to CMU Common Lisp, compile-from-stream).

When compiling a source, the compiler counts each top-level form it processes,
but when the compiler handles multiple files as one block compilation, the top-level
form count continues past file boundaries. Therefore code-location-top-level-form-
offset returns an offset that does not always start at zero for the code-locationjs debug-
source. The offset into a particular source is code-location-top-level-form-offset minus
debug-source-root-number.

9

Inside a top-level form, a code-locationjs form number indicates the subform
corresponding to the code-location.

debug-source-fromdebug-source This function returns an indication of the type of
source. The following are the possible values:

:file from a file (obtained by compile-file if compiled).
:lisp from Lisp (obtained by compile if compiled).
:stream from a non-file stream (CMU Common Lisp supports compile-from-

stream).
debug-source-namedebug-source This function returns the actual source in some

sense represented by debug-source, which is related to debug-source-from:
:file the pathname of the file.
:lisp a lambda-expression.
:stream some descriptive string thatjs otherwise useless.
debug-source-createddebug-source This function returns the universal time

someone created the source. This may be if it is unavailable.
debug-source-compileddebug-source This function returns the time someone

compiled the source. This is if the source is uncompiled.
debug-source-root-numberdebug-source This returns the number of top-level

forms processed by the compiler before compiling this source. If this source is
uncompiled, this is zero. This may be zero even if the source is compiled since the
first form in the first file compiled in one compilation, for example, must have a root
number of zero n the compiler saw no other top-level forms before it.

Source Translation Utilities, , Debug-sources, Debugger Programmerjs Interface

10.9 Source Translation Utilities
These two functions provide a mechanism for converting the rather obscure (but
highly compact) representation of source locations into an actual source form:

debug-source-start-positionsdebug-source This function returns the file position of
each top-level form as an array if debug-source is from a :file. If debug-source-from is
:lisp or :stream, this returns .

form-number-translationsform tlf-number This function returns a table mapping
form numbers (see code-location-form-number) to source-paths. A source-path
indicates a descent into the top-level-form form, going directly to the subform
corresponding to a form number. Tlf-number is the top-level-form number of form.

source-path-contextform path context This function returns the subform of form
indicated by the source-path. Form is a top-level form, and path is a source-path into
it. Context is the number of enclosing forms to return instead of directly returning the
source-path form. When context is non-zero, the form returned contains a marker, #:*
HERE*, immediately before the form indicated by path.

9

Function Index, Variable Index,
Debugger Programmerjs Interface, Top
Function Index Function Index

10

fn

11

Variable Index, Type Index,
Function Index, Top Variable Index
Variable Index

12

vr

13

Type Index, Concept Index, Variable
Index, Top Type Index Type Index

14

tp

15

Concept Index, , Type Index, Top
Concept Index Concept Index

16

cp

17

